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Globally Consistent Wrinkle-Aware Shading
of Line Drawings

Pradeep Kumar Jayaraman, Chi-Wing Fu, Jianmin Zheng, Xueting Liu and Tien-Tsin Wong

Abstract—Shading is a tedious process for artists involved in 2D cartoon and manga production given the volume of contents that the
artists have to prepare regularly over tight schedule. While we can automate shading production with the presence of geometry, it is
impractical for artists to model the geometry for every single drawing. In this work, we aim to automate shading generation by analyzing
the local shapes, connections, and spatial arrangement of wrinkle strokes in a clean line drawing. By this, artists can focus more on
the design rather than the tedious manual editing work, and experiment with different shading effects under different conditions. To
achieve this, we have made three key technical contributions. First, we model five perceptual cues by exploring relevant psychological
principles to estimate the local depth profile around strokes. Second, we formulate stroke interpretation as a global optimization model
that simultaneously balances different interpretations suggested by the perceptual cues and minimizes the interpretation discrepancy.
Lastly, we develop a wrinkle-aware inflation method to generate a height field for the surface to support the shading region computation.
In particular, we enable the generation of two commonly-used shading styles: 3D-like soft shading and manga-style flat shading.

F

1 INTRODUCTION

SHADING can dramatically change the atmosphere and
style of a 2D drawing. Artists achieve this by manually

locating the shading regions, followed by coloring them,
or laying screentones, based on the desired visual style.
While such a process can be automated with the presence
of geometry, it is impractical for artists to spend time on
modeling the geometry for every single drawing. Therefore,
it would be desirable to infer certain geometry information
directly from the artists’ clean line drawing, automate the
shading, and save the artists from the tedious shading
process, so that they can focus on creative aspects.

Early methods for modeling the geometry of line
drawings [1], [2], [3], [4], [5], [6] seem to be applicable for our
need. However, these methods are designed mainly for line
drawings of rigid polyhedral shapes in orthographic view.
In our case, arbitrary 2D drawings generally depict freeform
objects with no guarantee on the physical correctness.

Sketch-based modeling methods [7], [8], [9] may be
usable, but they are too demanding for our shading purpose
as they aim to create a complete 3D geometry, requiring
much user annotation. Note that traditional 2D cartooning is
a highly labor-intensive process with a very tight schedule.
An approximate view-dependent proxy geometry would be
sufficient to support the shading, as shown by Sýkora et
al. [10]. However, their method considers mainly the region
contour, while we need to consider interior strokes, which
depict intra-region bulges and dents.

Besides, some methods aim to recover the normal
field [12], [13], [14] or proxy geometry [15], [16] from
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line drawings. However, they are not very successful in
analyzing the semantics of interior strokes, e.g., see the
wrinkle strokes in Fig. 1. As the way that these methods
interpret strokes is either user-driven, or handled locally
without a global consideration, the inferred local geometry
may not be consistent over the line drawing. In particular,
we may have ambiguities in the local interpretation, see
Fig. 2. Such crowded wrinkle strokes are not rare in
conventional 2D line drawings, unfortunately.

In this work, our goal is to automate shading production
on line drawings. Particularly, we consider both boundary
and interior strokes, but focus mainly on the interior
wrinkle strokes, which are feature lines purposely drawn
to illustrate geometric features of the underlying object,
e.g., ridges/valleys [17], [18], suggestive contours [19], as
well as occluding contours (a.k.a. silhouettes) [20], [21], [22].
Each of these strokes suggests certain sparse cues about the
local shape or depth profile of the object in the drawing.
It has been studied by Cole et al. [23] that these line
drawing definitions can explain almost all kinds of human
drawn lines in drawings (81% in their dataset). Therefore,
by analyzing their semantics, we can infer local perceptual
information, and construct partial geometric information
over the line drawing to support shading production. Such
an analysis is generally lacking in existing works.

Fig. 1. With just a few strokes, line drawings [11] can illustrate nontrivial
geometric features that are (perceptually) not difficult to recognize.
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Fig. 2. Ambiguity in interpreting a pair of wrinkle strokes shown on the
left. Locally, the in-between region can be perceived as a dent or a bulge;
note: white and black colors indicate near and far, respectively.

To meet the goal, we develop a series of computational
methods with the novel technical components below:
• First, we adopt and model five different perceptual

cues, namely T-junction, convexity, continuity, proximity,
and regularity, to interpret the local geometric meaning
of wrinkle strokes by exploring relevant psychological
principles. These cues not only suggest the local shape
based on individual strokes, but also explore the spatial
arrangement and interaction among strokes for consistent
interpretation of strokes over the drawing.

• Second, we formulate a global optimization for the
stroke interpretation problem, aiming at maximizing the
fulfilment of local interpretations and minimizing the
inconsistencies across adjacent interpretations.

• Lastly, we develop a wrinkle-aware inflation method to
estimate the partial geometry of the line drawing for
shading production. We support two commonly-used
shading styles: 3D-like soft shading and flat shading in
manga style (see Fig. 3c and Fig. 4 for examples).

To demonstrate the applicability and effectiveness of our
method, we present shading results on variety of input
line drawings, and conduct experiments to evaluate and
compare our method against state-of-the-art methods.

2 RELATED WORK

To shade a line drawing, one needs to first create or
recover full 3D geometry or partial geometry (e.g., height
field) of the drawing. For this purpose, there are generally
two categories of methods: sketch-based modeling and
image-based geometry reconstruction. Moreover, this work
also relates to image-based shading and line interpretation.

Sketch-based Modeling. Sketch-based methods create 3D
geometry from user sketches, e.g., Teddy [7], FiberMesh [8],
NaturaSketch [24], True2Form [25], and SecondSkin [26]; see
related surveys by Olsen et al. [27], and Cook et al. [28] for
details. Usually these methods require users to repeatedly
draw strokes or add depth clues to define or modify the
geometry. E.g., FiberMesh uses extra control curves to cut,
extrude, or tunnel a shape. This process enables the creation
of nontrivial geometry, but is rather tedious and often more
than necessary in our case, since we only need to produce
shading without requiring a physically-correct geometry.

Estimating 3D Geometry from 2D Lines/Images. Extensive
research has been done in reconstructing 3D or pseudo-3D
geometry from a 2D natural image, particularly in recent
years, e.g., [29], [30], [31], [32], to name a few. Rather than
attempting to be exhaustive, we mainly focus on methods
for 2D line drawings, since they are more related to this
work. To construct a 3D geometry from a line drawing,

various works have been developed for industrial and
architectural line drawings with strong assumptions on the
input drawings and shapes being constructed [33], [34].
Hence, these methods generally cannot handle arbitrary
drawings. Existing geometry reconstruction methods to
handle arbitrary line drawings can be roughly classified into
inflation methods and normal field estimation methods.

Inflation methods reconstruct 3D geometry in an input
drawing by blowing up each 2D object region to 3D.
To create detailed structures in a region, users may
specify certain internal constraints [15], [16], [32], [35],
[36]. While these interactive methods produce good results
given sufficient user-specified constraints, they require
tedious manual inputs to handle crowded wrinkle strokes.
Besides user-specified constraints, attempts have been
made to automatically construct surface geometry from
line drawings by analyzing T-junctions along boundary
lines [37]. However, the analysis of interior strokes is
generally lacking. Although some methods handle interior
strokes by region subdivision [10], this approach requires
user input and additional computation to ensure that the
subdivided regions can be integrated in the final geometry.
Kolomenkin et al. [38] reconstructed archaeological line
drawings whose interior strokes represent flat step-like
features with similar profiles; however, the method is unable
to handle freeform drawings with wrinkled surface and
complex local features. Some other works explored ways
to reconstruct a developable surface from 3D curves [39],
or a set of multi-view 2D drawings [40]. These methods
cannot be applied to our case, since we only have a single
2D line drawing as input. Our method estimates partial
local geometry by analyzing the semantics of strokes in the
drawing, and then infers a delicate geometry via a global
optimization. Hence, we can support shading production
even for drawings with complex wrinkle strokes.

Normal field estimation methods reconstruct a
normal field over the image space of the input drawing
using various features, e.g., dominant curvatures [12],
user-marked normals [41], cross-sectional curvature
lines [13], [14], 3D normals along isophotes [42], and
hatching strokes [43]. While most of these methods can well
reconstruct the global shape of the drawing, they generally
cannot handle the interior strokes that indicate wrinkles
or folds. To this end, Johnston [12] incorporated manual
specification to indicate the sign of normals along each
stroke whenever needed, while Bui et al. [43] estimated
local geometry along each stroke using nearby hatching
strokes. In a short summary, existing methods adopt only
simple local features (e.g., curvature) to estimate local
geometry, and require additional manual specifications
(e.g., label and hatching strokes) to achieve good results.
In contrast, we analyze not only local stroke properties
and their spatial interactions, but also formulate a global
optimization to produce a global interpretation of strokes.

Shading 2D Drawings. Artists commonly create shading
by imagining the 3D shape and light source location, and
shading the associated regions with darker colors, gradients
or textures, e.g., hatching and screening. While we may use
software like Photoshop, Illustrator, and Manga Studio, the
manual process is still tedious. Only a few works focused on
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Fig. 3. Overview of our approach. We take a 2D line drawing (TOWEL) as input (a), and analyze various perceptual cues to estimate the local
geometric information around each stroke (b). After that, we combine these local cues via an optimization model to maximize the satisfaction over
the local inference and to obtain a globally-consistent stroke interpretation. Lastly, we develop a wrinkle-aware inflation method to generate a partial
geometry, which can be used to support the production of two different shading styles (c).

simplifying the process, e.g., Qu et al. [44] proposed a manga
screening method to convert color photos to manga images;
however, since their method relies on color and texture
information, it cannot handle line drawings. This work aims
to take a clean line drawing as input, and estimate the
shading regions to automate shading production.

Line Interpretation. The interpretation of lines or
user-drawn strokes has gained interest from both perceptual
studies and computer vision research. Feature lines [45],
[46] are particularly considered, since they are purposely
drawn [23] to depict geometric features such as silhouettes,
sudden changes in gradient, folds/bends in the surface, etc.
These lines provide important cues about the 3D shape that
can be consistently interpreted by humans [47].

To interpret lines, we may explore local (individual
lines) and global features (among lines). Local features like
3D surface properties such as principal curvatures [48],
[49], [50] and depth/orientation discontinuities [2], [4] have
been extensively studied from a geometric perspective. By
exploring the Gestalt psychology [51], [52], higher-level
semantics of lines could be estimated by considering
human perception. Such results can facilitate a wide
range of applications, e.g., curve completion [53], local
layering [54], [55], [56], line drawing simplification [57], [58],
etc. Compared to previous works, we also interpret lines as
guided by the Gestalt psychology, but focus particularly on
wrinkled surfaces illustrated in line drawings. Moreover,
our method considers several perceptual cues and how
strokes interact with one another to estimate partial
geometry information through a global optimization.

3 OVERVIEW

Our Goal. Our input is a set of interior and boundary
strokes in a given vectorized clean line drawing, e.g., see
Fig. 3a. These strokes are purposely drawn by hand to
illustrate various geometric features such as bulge, dent,
and silhouette. Each stroke is simply given as a 2D polyline,
without labels that indicate the geometric features.

Taking such input, our goal is to analyze the strokes in
the given line drawing (particularly the wrinkle strokes),
including their local shapes and how they spatially interact

Fig. 4. Common shading styles. 3D-like soft shading (left) (by getty [60])
employs gradients and soft shadows, while manga-style flat shading
(right) (e.g., from [61]) has hard shading region boundaries. Also note
that the shading region seldom goes across strokes in flat shading.

with one another, to estimate partial geometry information
in the line drawing to automate shading production.

The Challenges. To produce shading with wrinkles, we
need to decide where to shade and how much to shade.
To this end, we have to estimate certain local geometry
information around the strokes, even though we do not
require physical correctness. This is a challenging problem
as our input is only a single line drawing without temporal
information (in contrast to problems tackled by Zhang et
al. [59] and Liu et al. [55]), and the strokes are simply 2D
polylines without labels and user annotations. To resolve
these issues, we consider the following subproblems:
• First, we have to estimate local geometry information

around each stroke, specifically, i) the local gradient
around the stroke, ii) specific geometric feature suggested
by the stroke’s shape or the presence of T-junction at
the stroke endpoint(s), and iii) its interaction with nearby
strokes. To support the analysis, T-junctions may help to
estimate the local geometry [55], [56], but T-junctions are
insufficient for resolving the problem, since most of them
are located around the object boundary, while wrinkles in
line drawings often occur in interior regions, see Fig. 1.

• Second, we need to integrate the local geometry
information estimated from individual strokes, so that we
can create a globally-consistent stroke interpretation and
a partial geometry over the entire line drawing. If we
only consider local cues around individual strokes, the
estimated geometry may be ambiguous or featureless, see
a comparison experiment in Sec. 6.4.

• Lastly, we need to consider the characteristics of shading
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Fig. 5. These cross-sectional views illustrate transitions across depth
profiles in the simplified stroke model, where the green dot refers to a
point on the stroke. In this model, when the gradient value |gi| is small,
the stroke is interpreted as a ridge or valley, and when |gi| increases, the
local depth profile gradually transits to a suggestive contour, and further
to an occluding contour with a local depth discontinuity.

styles. Two shading styles commonly found in cartoon
and manga are considered (see Fig. 4 for examples):
i) Soft shading resembles 3D shading and is realized by

means of color gradients. Such a style has a smooth
transition from dark to light across a shading region and
provides a nice 3D perception; however, since this style
involves gradients, it is very tedious to create manually.

ii) Flat shading in manga style differs from conventional 3D
shading; the shading region has hard boundary with
solid color or texture, and usually stops at and seldom
goes across the strokes in drawing.

Our Approach. We approach the above subproblems
through a novel three-stage computation pipeline, see Fig. 3:
• First, we analyze not only T-junctions but also several

other perceptual cues by consulting relevant principles
from the Gestalt psychology. These include cues on
individual strokes (convexity), and cues on pairs and
groups of strokes (proximity, continuity, and regularity).

• Next, to obtain a globally-consistent stroke interpretation
over the perceptual cues, we formulate a novel
optimization model to combine and balance the local
stroke inference results (Fig. 3b). Here, we define energy
functions to quantify individual cues, and integrate them
into a global energy function, so that we can maximize the
perceptual consistency over the drawing.

• Lastly, to produce shading, we develop a wrinkle-aware
inflation method to estimate a partial geometry by
constructing a mesh and estimating its z-coordinates (a
height field) from the local depth profiles inferred around
strokes (Fig. 3c). We design our inflation framework such
that the reconstructed mesh satisfies the characteristics of
the associated shading style, i.e., 3D-like soft shading or
flat shading in manga style.

4 INFERRING STROKE GRADIENTS

4.1 A Simplified Stroke Model for Wrinkles

We consider two kinds of strokes: i) for boundary strokes
that enclose an object in the given drawing, we employ
conventional boundary conditions to model their geometric
behavior; see Sec. 5 for detail, and ii) for interior strokes
(each denoted as si), we devise a simplified stroke model
to describe their depth profiles. Like freeform 2D drawings,
this model does not aim for physical correctness but for the
estimation of perceptual information, and the construction
of partial geometry to support shading production.

Fig. 6. Perceptual Cue: T-junction.

On a wrinkled surface, different surface regions could
deform to different extents. Hence, a line drawing can
contain ridge/valley strokes [17], [18], suggestive contours
[19], as well as occluding strokes [20], [21] (see Fig. 5),
depending on the amount of depth difference, or gradient
across the strokes. Our simplified stroke model describes a
smooth transition across these depth profiles using a signed
value denoted as gi ∈ [−1,+1] for stroke si. The sign of
gi indicates the gradient direction, or equivalently which
side of the stroke is higher (or lower) in the depth profile,
while its magnitude indicates the relative
amount of depth difference. Moreover, we
define the orientation reference (left and
right sides) of each stroke by traveling
along the stroke from its start to end point
(see the inset figure); here, gi is positive
if the left side of the stroke is higher, and
vice versa. This model can cover various
notable features in line drawings, since a large portion
of human-drawn lines [23] are used for conveying local
features like occlusion, ridges, and valleys.

Next, we explore five different perceptual cues to obtain
local hints for estimating gi (Sec. 4.2), and then formulate an
optimization model to combine these local hints to infer a
globally-consistent stroke interpretation (Sec. 4.3).

4.2 Perceptual Cues

We present five perceptual cues, each considering a different
perceptual aspect to help estimate the local gradient (gi):
T-junction considers a local occlusion; convexity considers the
shape of individual stroke; continuity considers a stroke pair
that appears to continue from each other like a single curve;
proximity considers a stroke pair that appears to press on
each other to form a bulge or dent; and regularity considers
a group of evenly-spaced strokes of similar shapes.

i) T-junction. A T-junction is formed when an endpoint of
a stroke lies on another stroke. Perceptually, this suggests
a local occlusion, see the amodal completion law [52]: “we
tend to interpret the interrupted curve as the boundary of
some object undergoing an occlusion.” E.g., in the blown-up
views shown in Fig. 6, the side next to the interrupted curve
is lower than the side next to the other curve.

We explored two metrics for T-junction cue proposed
by Liu et al. [55] and Yeh et al. [56]. We adopt the latter
one, since we found it to be more robust for our case in
experiments. In detail, we compute the T-junction cue as:

Ti =
1

π/2

[
|(α mod π)− π

2
| − |(β mod π)− π

2
|
]
, (1)
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(a) (b)
Fig. 7. (a) Inflections give rise to ambiguity in perceiving the depth across
a stroke. (b) Perceptual Cue: Convexity.

where α and β are the junction angles (see again Fig. 6) and
mod is the modulus operator. The range of Ti is [−1,+1],
where a value close to zero indicates a weak T-junction (e.g.,
when α ≈ β), while a value close to +1 (or -1) indicates
a strong T-junction with the side on angle α (or β) being
higher than the other. Note that Ti is set to zero for strokes
that are not associated with any T-junction.

ii) Convexity. In Gestalt psychology [62], convex shapes
could be perceptually associated to figure or foreground
regions. Several works have used this cue to separate figure
and ground [63], and to estimate local layering [12], [54]. In
wrinkles, see Fig. 7b, when a stroke bends towards one side,
this suggests a local bulge in the associated convex region.
Hence, the bulged side of the stroke would be higher than
the other. However, if the stroke contains an inflection (see
Fig. 7a), ambiguity could arise in the perception.

From these observations, we quantify the convexity cue
based on the deviation (signed area) of a stroke (si) from the
straight line (Li) that joins si’s endpoints (see again Fig. 7a):

Vi = clamp( Ai/(ηA0) , [−1,+1] ) , (2)

where Ai is the signed area of the stroke deviated from
Li (see shaded areas in Fig. 7a&b), A0 is the area of the
semicircle with Li as its diameter, η is a parameter set to
be 0.5 in all our experiments, and clamp(value, [min, max])
truncates the given value into range [min, max]. Using this
formulation, strokes with inflections receive small |Vi|,
while convex strokes with single-sided bending receive
large |Vi|. Again, a positive Vi indicates that the left side
of the stroke is higher, and vice versa.

iii) Continuity. As suggested by the Gestalt principle of good
continuation [52], [64], human tends to perceive a curve as
continuing along its established direction. Hence, strokes
that appear to extend from each other are often perceptually
seen as a single stroke, see Fig. 8; in other words, they would
appear to have similar depth profiles or gradients.

Fig. 8. Perceptual Cue: Continuity.

Fig. 9. Perceptual Cue: Proximity.

To estimate the continuity between a pair of strokes,
say si and sj , we first find a pair of stroke endpoints, one
from each stroke, such that the distance between the two
endpoints is the shortest among the four possible endpoint
pairs. We then extract a small segment of stroke near each
endpoint, and fit a cubic spline that passes through the two
endpoints as well as overlaps the two segments, see the
dashed lines in Fig. 8 (right). Next, we sum up the total
absolute curvatureKi,j =

∫
|k(s)|ds along the spline, where

k is the curvature and s is the arclength parameter, and
quantify the continuity term:

Ci,j = G(0;
π

4
)(Ki,j) , (3)

where G(µ;σ)(·) is a Gaussian kernel with mean µ and
standard deviation σ for controlling the fall-off. Hence, G
helps to normalize Ci,j to [0, 1], such that when Ki,j is zero,
Ci,j is one, and when Ki,j increases, Ci,j will gradually
drop towards zero accordingly. Also note that we set Ci,j to
zero if the length of the spline is longer than the summed
length of the two strokes (si and sj), or the spline crosses
(intersects) some other strokes in the line drawing.

iv) Proximity. For wrinkles illustrated in line drawings, it is
common to see nearby strokes (nearly parallel) that appear
to press on each other. Hence, the region in-between would
perceptually look like a bulge or dent
resulted from a local deformation, see
the T-shirt example shown in Fig. 9.
Note that the bulges and dents occur
alternatively across the regions around
the associated strokes, see cases 1 and
2 illustrated in Fig. 9. See also the
inset figure, which is the reference
photo that the artist [65] employed for
sketching Fig. 9; label D indicates a
dent, while label B indicates a bulge.

From observation, the strength of proximity cue (or the
local deformation) is affected by: i) the spatial proximity
between strokes, i.e., the closer the stronger; ii) the
parallelity of stroke pair; iii) the perception is reduced (or
even nullified) if some other stroke intercepts in-between;
and iv) the perception is unaffected even though the length
of the two strokes are unequal (see the right box in Fig. 9).
To model the proximity cue with these characteristics,
commonly-used metrics such as Hausdorff distance [66] and
Fréchet distance [67] would perform poorly, especially for
(ii)-(iv), see Fig. 10 for a quantitative comparison.

Our metric is computed as follows. Given strokes si and
sj , without loss of generality, we assume that si is not longer
than sj . Then, we sample N uniformly-spaced points along
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Fig. 10. Comparing metrics for quantifying proximity in various forms
of wrinkle stroke pairs commonly found in line drawings: Hausdorff
distance (H), Fréchet distance (F), and ours (1-P), where P is our
proximity metric. Note that proximity is inversely proportional to the
distance. The left three cases should be a strong proximity (low values)
while the rightmost case should be weak (high values) due to occlusion.

si, say pk with k ∈ [1, N ], where p1 and pN are endpoints of
si. For each pk, we determine a point qk on sj , such that the
distance between pk and qk, i.e., ||pk − qk||, is minimized.
Next, we define a binary function δk, which is zero if the
straight line segment that joins pk and qk intersects some
other strokes, and one otherwise. From these, we compute
the proximity cue Pi,j (si w.r.t. sj) by averaging the distance
values modulated by δk and a Gaussian kernel:

Pi,j =
1

N

∑
pk∈si

δk ·G(0; 0.2)

(
min
qk∈sj

‖pk − qk‖
)
, (4)

where G is a Gaussian kernel with µ=0 and σ=0.2 for
mapping distance values to [0, 1]. Note that if the point pair,
pk and qk, are near and unoccluded, the mapped value will
be close to one, and vice versa. For normalization purpose,
we scale the input drawing, so that its larger side has
one-unit length while its aspect ratio is preserved.

v) Regularity. When three or more similarly-shaped strokes
align roughly in the same orientation with similar spacing
in-between, see Fig. 11, we tend to perceive them as a group
with similar property [52]. In this situation, the strokes in
the group would appear to portray similar depth profiles
rather than alternating bulges and dents.

We consider the following criteria in modeling the
regularity cue: i) similarity of gap size in between adjacent
strokes, ii) the local depth profile of the strokes as suggested
by the convexity cue (Vi) and T-junction cue (Ti), and iii)
rough alignment of the strokes along the same orientation.
Before we formulate the cue, we first construct a stroke
graph G to model the spatial proximity among the strokes
in the line drawing. Each stroke (si) is represented as a node
in G. An edge is added between nodes, say si and sj , if
Pi,j is larger than a threshold (which is set to be 0.5) and
the two strokes have similar depth profiles as suggested by

Fig. 11. Perceptual Cue: Regularity.

local cues Vi and Ti. For each edge, we compute li,j , the
spacing (average distance) between strokes si and sj .

Next, we aim to find subgraphs with two or more edges
in G that have similar spacing sizes (li,j). This can be done
by a simple breadth-first traversal from each edge in G. For
each subgraph obtained, we compute the regularity cue for
each of its connecting edges:

Ri,j = G(0; 0.2)(| li,j − l̄ |) , (5)

where G is a Gaussian kernel to put Ri,j into range [0, 1],
and l̄ is the median of li,j among the edges in the subgraph.
In this way, Ri,j measures how well each pair of strokes fits
other strokes within the same regularity group. For stroke
pairs not in any regularity group, we set Ri,j = 0.

4.3 Optimization Model

Energy Terms. Now, we formulate an energy term for each
perceptual cue to constrain the unknown variables gi (which
is the local gradient of stroke si; see Sec. 4.1) accordingly:

• T-junction Energy ET measures the deviation of gi from
the associated T-junction cue estimation (Ti):

ET =
∑
i

|Ti| · ‖gi − Ti‖2 . (6)

By multiplying with |Ti|, we can achieve the following:
if a stroke associates with a strong T-junction, |Ti| will be
large, so it will be harder for gi to deviate from Ti, since
our optimization model (to be presented later) minimizes
ET . On the other hand, if a stroke associates with a
weak/ambiguous T-junction or simply does not associate
with any T-junction, |Ti| is small or zero, so gi can be more
freely adjusted and may take a value further from Ti.

• Convexity Energy EV is formulated like ET for measuring
the deviation of gi from the associated Vi:

EV =
∑
i

|Vi| · ‖gi − Vi‖2 . (7)

• Continuity Energy EC encourages a stroke pair (say si
and sj) with high continuity value (Ci,j) to have similar
depth profiles (local gradients gi and gj), since they would
perceptually appear to be a single stroke:

EC =
∑

i,j s.t. i6=j

Ci,j · φ(si, sj) · (gi · gj) , (8)

where φ takes a value of -1 or +1 to rectify the sign
of gi and gj (see the inset figure in Sec. 4.1); φ is +1
if the orientations of si and sj do not match at the
nearby endpoints, and -1 otherwise. Note also that we
multiply φ, gi and gj , so that when we minimize EC in
the optimization, gi and gj are encouraged to have the
same sign (both positive or both negative) if si and sj
have the same orientation, or opposite signs if si and sj
have different orientations.

• Proximity Energy EP encourages a stroke pair si and
sj with high proximity Pi,j to have different signs, so
that they can have different depth profiles, resulting as
alternating bulges and dents:

EP =
∑

i,j s.t. i6=j

Pi,j · (−φ(si, sj)) · (gi · gj) . (9)
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Fig. 12. Inflation with wrinkles. We set up a sparse gradient field based
on the estimated local gradients across the strokes (left), and employ it
to further estimate the 3D surface by computing a dense gradient field.
The surface will be reconstructed to be smooth for soft shading (middle),
and flat on the higher side of strokes for flat shading (right).

Note thatEP is formulated in a way similar to EC , but we
use −φ, so that we can encourage local gradients gi and
gj (of strokes si and sj , resp.) to have opposite signs and
produce alternating depth profiles when |Pi,j | is large.

• Regularity Energy ER encourages strokes in a regularity
group to have similar depth profiles (or local gradients gi)
based on their affinity (Ri,j) to the group. We formulate
this as a pairwise energy term similar to EC :

ER =
∑

i,j s.t. i6=j

Ri,j · φ(si, sj) · (gi · gj) . (10)

Putting the terms together. To obtain a globally-consistent
interpretation of the strokes, we combine and balance
the estimations from individual cues (see Sec. 6 for our
comparison experiment) and seek a solution { gi : gi ∈
[−1, 1]; ∀i } that minimizes the combined energy terms:

min
{
λTET + λV EV + λPEP + λCEC + λRER

}
, (11)

where λT , λV , λP , λC , and λR are weights for
balancing the influences of the energy terms. Since
T-junction and regularity cues are empirically found to be
stronger than the other cues, we set λT =λR=8, whereas
λV =2 and λP =λC=5. In addition, since the objective
function is quadratic but non-convex, we solve it by
sequential quadratic programming [68], which iteratively
approximates and solves the objective function with a
quadratic programming subproblem. In our experiments,
the optimization usually converges in ∼ 5 to 20 iterations.

5 INFLATION WITH WRINKLES

After estimating the depth profile of each stroke, we
next need to recover partial 3D information to support
the shading computation. To this end, we develop a
wrinkle-aware inflation method to lift up the 2D drawing to
3D in three steps, as explained in Sections 5.1 to 5.3, followed
by the shading process presented in Sec. 5.4.

5.1 Sparse Stroke Gradients
First, we define the surface gradient along each stroke using
the estimated depth profiles gi. Since the gradient resulted
from this step will influence the shading style to be achieved
from the partial geometry, we consider two cases:

Case (i) For 3D-like soft shading, the goal is to reconstruct a
smooth and fair surface that will imbue a 3D-look to the line
drawing when shaded. In this case, we define the gradient
along each stroke as follows:

1) Compute 2D unit normal vectors n(s) sampled along
each stroke si (to the left side of si) in 2D image space,
where s is the arclength parameter.

2) Compute sparse 2D gradient vectors along the strokes as
F ∗(x, y) = w(s)·gi ·n(s), wherew(s) is a weight function
along each stroke to smoothly attenuate the gradient
vectors from the middle of the stroke to its endpoints,
see the length of the little red gradient vectors along each
stroke in Fig. 12a. In detail, we model w(s) as a cubic
polynomial with w(0)=w(1)=0 and w(1/3)=w(2/3)=1.
To exclude a T-junction, we set w(0) or w(1) to one, if the
associated endpoint is a junction.

Case (ii) For flat shading, the shading regions have hard
boundaries and usually do not go across the strokes.
While hard boundaries can be achieved by thresholding,
it is challenging to ensure that the shading region does
not go across the strokes. Our observation is that if the
higher side of the stroke is inflated extensively, it may cast
shadow/shading that goes across the stroke. Hence, we
avoid inflating the higher side when defining the sparse
stroke gradients as follows:
1) For strokes (si) whose local gradient |gi| is larger than a

threshold (set as 0.25), we duplicate it into two, say sh
i

and sl
i, in the image space of the drawing, and associate

sh
i and sl

i respectively to the higher and lower sides of
the local region around the stroke based on the sign of gi.
Hence, we can constrain the gradient field independently
on the left and right sides of the strokes.

2) Compute the gradient along each stroke using steps 1 & 2
in Case (i) above, and assign the result to sl

i.
3) Define sparse 2D gradient vectors along sh

i as F ∗(x, y) =
[0, 0]T , so that the higher side of the reconstructed height
field would be flat near the stroke.

Boundary. For both cases (i) and (ii), we set the gradient
vectors along boundary ∂Ω, using inward-pointing normals:
F ∗(x, y) = (−b(s) · n(s)), where b(s) modulates the
normal vectors n(s), so that we can control the local shape
near the boundary of the partial geometry (surface) to be
reconstructed. For example, if b ≈ 0, the surface is locally
flat. In our experiments, we set b as a constant based on
the perceived local shape near the contour. Additionally,
we smoothly attenuate b(s) near the lower side of the
T-junctions using w(s) as in Case (i) above.

5.2 Dense Gradient Field
Our second step is to obtain a dense gradient field F (x, y)
over the 2D object region Ω, using the sparse gradients
defined in Sec. 5.1. We propagate these sparse gradient
vectors by minimizing the following energy functional:

min
F

∫
Ω
|∇F (x, y)|2 + |∇ × F (x, y)|2 dA (12)

subject to:

F (x, y) = F ∗(x, y), ∀(x, y) ∈ {si} ∪ ∂Ω ,

where ∇ is the gradient operator, ∇× is the curl operator,
and dA is an infinitesimal area in Ω. The first term seeks
a dense gradient field F (x, y) that smoothly interpolates
the sparse gradient vectors defined along the strokes and
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the boundary. Note that this is equivalent to seeking a zero
Laplacian, i.e., ∆F (x, y) = 0. The second term minimizes
the curl, so that F is integrable. Visually, minimizing the curl
ensures that the constrained gradients from F ∗ are retained
as such in F , and the gradient vectors spatially propagate
farther throughout the object region (Ω).

5.3 Surface from Gradient Field

Next, we aim to recover an approximate height field f from
the gradient field F . Ideally, ∇f = F , but F may not be
integrable. Hence, we apply the divergence operator and
seek for ∆f = ∇ · F by a minimization:

min
f

∫
Ω
|∆f −∇ · F |2 + λ|f − f∗|2dA . (13)

subject to:
f = f∗, ∀f ∈ {si} ∪ ∂Ω ,

where the first term seeks surface f whose gradient
approximates F , and the second term constrains f to
remain close to f∗ (a height function) along strokes and
boundary; this can be set to 0 for objects that are flat overall.
Otherwise, f∗ is estimated by solving the Poisson equation:
−∆f∗(x, y) = c, ∀(x, y) ∈ Ω \ ∂Ω subject to Dirichlet, i.e.,
fixing the height function to 0 at the boundary to simulate
a bulge near the boundary, and/or Neumann boundary
conditions, i.e., fixing the normal derivative of the height
function to 0 to simulate thin deformable material such as
cloth. In this equation, c controls f∗ similar to the inflation
model employed by Sýkora et al. [10] and λ controls how
close to f∗ we would like f to be; we set it as a small value in
range [0, 0.001]. The user may opt for Neumann boundary
condition along the deformable portions of the boundary,
e.g., see the bottom boundary of the cloth in Fig. 1 (left). In
this way, we can estimate a wrinkled surface f as a height
field for computing the shading, see Fig. 12(b).

Discretization Details

We solve Eqs. 12 & 13 numerically by triangulating Ω into a
mesh [69] with the following constraints: mesh edges pass
through strokes in the drawing, and mesh faces have similar
areas and angles. We discretize the differential operators
at each mesh vertex vi, by standard linear finite element
formulations based on one-ring neighbors N (vi) to reduce
Eqs. 12 & 13 to systems of linear equations. Specifically, the
Laplacian at each vertex vi is defined as [70], [71]:

∆(vi) ≈
1

Ai
· 1

2

∑
vj∈N (vi)

(cotαij + cotβij)(vj − vi) ,

where αij and βij are angles opposite to the edge vi-vj on
either side, and Ai is the Voronoi area at vi that accounts for
the differences in mesh sampling.

The discrete curl used in Eq. 12 is defined as [72]:

∇× F (vi) ≈
∑

vj ,vk∈N (vi)

Fijk · ejk ,

where the sum is taken over triangles vi-vj-vk incident to vi,
ejk refers to the edge vector from vj to vk, and Fijk is the
per-face average value of the vector field F .

(a) (b) (c)
Fig. 13. 3D-like soft shading style. We first generate a shading image
rendered with the Blinn-Phong shading model (a), followed by an
ambient occlusion map (b). These are combined with the original line
drawing being overlaid to generate the final soft shading result (c).

(a) (b) (c)
Fig. 14. Flat shading in manga style. We begin with an initial shading
(a), and generate a binary mask (b), on which we apply a screentone
texture to obtain a manga-style flat shading result (c).

The discrete divergence in Eq. 13 is defined as [73]:

∇·F (vi) ≈
1

2

∑
vj ,vk∈N (vi)

cot θij(eij ·Fijk)+cot θki(eki·Fijk) ,

where the sum is taken over triangles vi-vj-vk incident to vi,
and θ∗ refers to angles opposite to the associated edge e∗.

5.4 Shading
The height field f resulted in Sec. 5.3 provides partial
3D information for determining the shading regions. Our
inflation method reconstructs 3D meshes that adhere to
the characteristics of 3D-like soft shading and flat shading.
This enables us to generate these shading styles using
conventional rendering tools. To produce the rendering, we
first set up a directional light, and use an orthographic
camera. The resulting shading image can be multiplied with,
or overlaid on the original line drawing to produce the
shaded result, while keeping the image features originally
in the input drawing.

For 3D-like soft shading, we may use an off-the-shelf
global illumination engine to render the inflated mesh. We
generate such a result (Fig. 13c) by computing the shading
with the Blinn-Phong model and soft shadowing (Fig. 13a),
and an ambient occlusion map (Fig. 13b) using 3dsMax 2016.

For manga-style flat shading, we first generate the
shading image as above while setting the diffuse color to
white, and computing hard shadows (Fig. 14a). Next, we
convert it to a binary image by Otsu’s thresholding [74]
to obtain shading regions with hard boundaries (Fig. 14b).
Lastly, we apply a screentone texture on the shading regions
to generate a manga style shading effect (Fig. 14c).

6 RESULTS & DISCUSSION

6.1 Implementation
We implemented and ran our method on a desktop
computer with a 3.2GHz Intel Core i7 processor and 12 GB
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Fig. 15. 3D-like soft shading (top) and flat shading in manga style (bottom) rendered with a directional light source moving from left to right.

Fig. 16. Shading results on an animation sequence of a waving flag (obtained from [75]) in 3D-like soft shading style. The line drawing in each frame
was extracted and vectorized as input to our method that constructs the partial geometry. Note that the light source is on the left side.

TABLE 1
Time taken to generate shading from the line drawings.

Input Stroke Optimization Inflation
Analysis # Triangles Time

CLOTH 11.6s 0.012s 41,600 84.86s
T-SHIRT 35.8s 0.024s 32,543 64.10s

TABLECLOTH 39.5s 0.031s 30,326 67.33s
JEAN 171s 0.106s 29,438 60.71s

GOWN 264s 0.118s 33,806 72.83s
DRESS 75.44s 0.095s 29,052 57.36s
TOWEL 150.9s 0.065s 41,693 85.72s

memory. Our method takes a clean line drawing as input,
along with user-defined parameters, e.g., balancing weights
in optimization, boundary conditions, c in the Poisson
equation for f∗, the direction of the light source, and the
shading style; their default values were mentioned earlier.
Then, our method automatically performs stroke analysis,
global optimization, inflation, and shading. Table 1 shows
the timing statistics for various line drawings. Note that we
did not intentionally optimize our implementation for best
performance, and will leave it as our future work.

6.2 Shading Results
Fig. 17 presents our shading results on input drawings
with various forms of wrinkle strokes. Column 2 shows
global illumination renderings of the reconstructed partial
geometry, columns 3 & 4 show results in 3D-like soft
shading style, while columns 5 & 6 show results in

manga-style flat shading. We put the light source on top left
for results in columns 3 & 5, and on top right for columns
4 & 6. We may also change the light source direction and
modify the shading without recomputing everything in the
pipeline. Fig. 15 shows a shading result sequence generated
by gradually moving the light source from left to right.

Next, we apply our method to shade image frames in
a line drawing animation by extracting and vectorizing
frames in an animation; see Fig. 16, which shows that the
shading is fairly smooth across the frames. Note that we
did not consider temporal coherency in this work, since
it is a nontrivial problem on its own. To do this, we
may interpolate certain intermediate results in our method,
e.g., local gradients and partial geometry. Interpolating the
partial geometry is challenging, since we may not be able
to ensure smoothly varying gradients around the strokes
over the animation frames. On the other hand, interpolating
local stroke gradients over the frames seems to be simpler,
but topological changes of the strokes in the line drawing
can lead to a stroke correspondence problem, which could
be hard to handle. We leave this problem as a future work.

Note that to produce the results shown in the paper, we
use the default values of the parameters, except for a few: i)
c for finding f∗ in Eq. 13, since c describes the global shape
of the given object, ii) λ in Eq. 13, and iii) b(s) for controlling
the boundary, based on our perception of the 3D shape.
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Fig. 17. Shading results generated by our method: CLOTH, SHIRT, TABLECLOTH, JEAN, GOWN, and DRESS (from top to bottom). Column 1: input
line drawings; Neumann boundary conditions are revealed in magenta. Column 2: surfaces (the partial geometry) rendered with glossy reflections
and global illumination. Columns 3 & 4: 3D-like soft shading results. Columns 5 & 6: manga-style flat shading results. Note that the light source is
fixed at top-left for Columns 3 & 5 and at top-right for Columns 4 & 6, respectively.
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Fig. 18. Comparison with three closely-related recent works. In detail, we render the geometry kindly generated and provided by Dr. Sýkora [10]
(top gray box) and Dr. Yeh [32] (bottom-left gray box), and take the results from Bui et al. [43] (bottom-right gray box) for comparison.

6.3 Comparison with Closely-related Methods

We compare our method with three closely-related recent
works on reconstructing 3D information from a single input
image; see Fig. 18. In particular, we compare the visual
details in the shading results for illustrating wrinkles.

Sýkora et al. [10] built an interactive framework to
reconstruct bas-relief meshes from images of line drawings
and to support the generation of global illumination effect.
Their boundary inflation method alone cannot handle
wrinkles, and can only generate convex or concave shapes
based on the region boundaries. However, their framework
allows users to segment the wrinkle regions, and inflate
each segment into convex (bulge) or concave (dent) shapes,
and integrate the result into a single surface. We passed
the input drawings to the authors and obtained from them
the reconstructed surfaces; see Fig. 18 (top). Note that the
number of segments and inflation parameters are crucial for
good results with wrinkles. Hence, this approach generally
requires tedious works for complex drawings, such as JEAN
and TOWEL with crowded wrinkle strokes. On the other
hand, our method explicitly models the interior strokes,
and hence, it does not require additional manual works
for region segmentation and surface integration. We also
found that visually, our method can generate more detailed
geometry; see the blown-up views in Fig. 18 (top).

Yeh et al. [32] proposed an interactive approach to
generate high-relief geometry from a single input image by
accepting user annotations at specific points on the image
to constrain the local slope and curvature. Similarly, we
obtained results generated from their method, and present
one of them in Fig. 18 (bottom left). This approach proved
to be tedious for generating wrinkled height fields, since
their point-based annotations (rather than stroke-based)
are not effective in generating smooth wrinkled surfaces.

While we may reconstruct the global shape of an object
by sparse annotations, adding local details around wrinkle
strokes require dense and tedious user annotations in their
framework. In contrast, our results are smooth and plausible
for generating shading, without user annotation.

Bui et al. [43] designed a user-driven method to generate
shading on line drawings using a hatching metaphor:
users could sketch hatching patterns on the drawing,
and provide cues about the local normal orientation. In
the absence of such information, their method smoothly
interpolates the normals from the contour lines without
considering the local spatial structure and interaction
among neighboring strokes. Therefore, the wrinkle regions
are ill-defined in the geometry; see Fig. 18 (bottom right,
left subfigure). However, by additionally incorporating
user-drawn hatching strokes, their method is able to
generate a plausible normal field; see Fig. 18 (bottom right,
center subfigure). In contrast, by analyzing the spatial
arrangements of strokes in the line drawing, our method
can automatically estimate a consistent geometry from the
line drawing without user annotations; see Fig. 18 (bottom
right, right subfigure). Moreover, since our inflation method
reconstructs a height field surface, rather than just a normal
field, we can generate various visual effects, e.g., ambient
occlusion, shadows, global illumination, etc.

6.4 Evaluation: Global Optimization
We evaluate how the global optimization model contributes
by comparing partial geometries estimated from (i) local
cues alone and (ii) combined cues after global optimization.
For local estimation, we take the maximum value of the
T-junction and convexity cues as the depth profile of each
stroke, since the other cues are constraints over multiple
strokes. For global estimation, we apply our method in
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Fig. 19. Comparing partial geometry results generated from local estimations (maximum of T-junction and convexity cue) and global estimation (the
global optimization method in Sec. 4.3), corresponding to the left and right images, respectively, in each subfigure. From the red boxes, we can see
that the optimization can propagate the local gradient profiles, thus helping to generate richer and plausible shading results with more details.

Sec. 4.3 to combine and balance the local cues. We then
apply the inflation method in Sec. 5 to generate the partial
geometries from these local and global estimations.

From the results in Fig. 19, we can see that the local cues
alone may not be sufficient to create perceptually plausible
wrinkle geometry. Consider the leftmost red box in Fig. 19;
these strokes depict a wrinkle, but since they are nearly
straight lines, we cannot determine the depth profile across
these strokes from the local cues. On the other hand, the
depth profile of the same strokes in the third red box from
the left are derived from global optimization, where the
continuity and proximity cues help infer and propagate the
depth profile of the strokes, resulting in plausible wrinkle
geometry. Similarly, we can find richer wrinkle geometry
in the second and third comparison cases shown in Fig. 19
(middle & right).

7 CONCLUSION

This paper presents a novel method to analyze wrinkle
strokes in clean line drawings for automated shading
production. The key contributions include: i) computational
models of five perceptual cues (T-junction, convexity,
proximity, continuity, and regularity) for wrinkle strokes, in
which we explored the local shape, spatial relationship, and
interaction of strokes by consulting relevant psychological
principles; ii) an optimization formulation for deriving
a globally consistent interpretation of wrinkle strokes by
combining and balancing local estimations from the cues;
and iii) a wrinkle-aware inflation method for generating a
partial geometry to support two commonly-used shading
styles. Compared to the prior work, our method has several
unique features such as the ability to automatically generate
rich wrinkle geometry conveyed through the interior
strokes, infer a globally consistent stroke interpretation, and
support shading characteristics employed by artists with
the various examples shown in the results. These features
facilitate the generation of plausible shading even on line
drawings with crowded wrinkle strokes, which cannot be
handled by the previous works.

Limitations. Our method shares some common limitations
with other works on single-image 3D reconstruction
techniques. First, even though our method can generate
plausible shadings in a given view, it may not reconstruct
a perfect 3D surface when the actual (perceived) depth
depicted by the strokes in the drawing vary drastically

(e.g., see TABLECLOTH). Second, we assume that the
geometry is smooth and non-polyhedral, i.e., without sharp
edges and tilted planes. Third, our current implementation
uses a fixed-height or free boundary condition along the
boundary contours with constant gradients, since this work
focuses mainly on the analysis of interior wrinkle strokes.
Fourth, we assume clean line drawings as inputs, where the
strokes are drawn purposely for depicting certain features
without errors, e.g., strokes that intersect and cross one
another. Lastly, we only consider lighting and geometry as
the main influencing factors for shading, and did not take
into account other artistic criteria; see future work below.

Future work. First, it is worth pointing out that there
are other factors that could affect the shading style,
e.g., the semantics of the scene and the artists’ personal
preference or style. In future, we plan to extend our
method with more shading styles and characteristics,
e.g., to learn the artist drawing styles, and to explore
automatic and smart methods for line drawings with
regions of different semantics. Second, we are interested
in extending our optimization and inflation framework
to support shading of animated line drawings, typically
by considering temporal consistency [55] for ensuring
smoothly varying shading results. Third, we currently
assume the input lines to be of one-pixel width. This
assumption could be relaxed in future by considering lines
of varying width, as well as their hierarchical organization
in the drawing, since artists associate such fine lines
with features that are less prominent. Lastly, we are
interested in exploring the inclusion of user interactivity for
handling very complex line drawings, e.g., drawings that
depict both smooth and polyhedral shapes, drawings with
folded [40] or double-sided surfaces [32], and drawings with
nonlinear boundary conditions that require additional user
intervention in reconstructing the partial shape.
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