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Abstract

Reverse engineering of 3D industrial objects such as automobiles and electric appliances is typically per-
formed by fitting B-spline surfaces to scanned point cloud data with a fairing term to ensure smoothness,
which often smooths out sharp features. This paper proposes a radically different approach to constructing
fair B-spline surfaces, which consists of fitting a surface without a fairing term to capture sharp edges,
smoothing the normal field of the constructed surface with feature preservation, and reconstructing the
B-spline surface from the smoothed normal field. The core of our method is an image processing based
feature-preserving normal field fairing technique. This is inspired by the success of many recent research
works on the use of normal field for reconstructing mesh models, and makes use of the impressive simplic-
ity and effectiveness of bilateral-like filtering for image denoising. In particular, our approach adaptively
partitions the B-spline surface into a set of segments such that each segment has approximately uniform
parameterization, generates an image from each segment in the parameter space whose pixel values are the
normal vectors of the surface, and then applies a bilateral filter in the parameter domain to fair the normal
field. As a result, our approach inherits the advantages of image bilateral filtering techniques and is able to
effectively smooth B-spline surfaces with feature preservation as demonstrated by various examples.
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1. Introduction

Reverse engineering of 3D objects is one of the
most workable methods to generate computer-aided
design (CAD) models from existing physical objects
[1]. It begins with data acquisition process, for ex-5

ample, by laser scanners, to obtain a point cloud
representation of a real 3D object, then performs
some geometric processes on the point cloud, and fi-
nally reconstructs surfaces. Usually, the point cloud
is likely to contain outliers and noise due to the ac-10

quisition process, or possible artifacts in the physi-
cal objects (for instance, in some damaged pieces).

B-splines are often the target representation of
the reconstruction for many CAD applications. It
is common that the B-spline surface fitting pro-15
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cess may induce unwanted “wiggles” in the result-
ing surface [2], which is particularly exaggerated in
the presence of noise. To alleviate this problem,
reconstruction techniques usually employ a combi-
nation of fidelity and fairness terms to ensure that20

the surface matches the point cloud as much as pos-
sible, and meanwhile keep the surface smooth. A
commonly used fairing functional is the thin-plate
bending energy and its various variants [3]. How-
ever, these functionals are isotropic and do not well25

preserve sharp features on the underlying surface.
While B-spline surface fitting is quite an old topic,
reconstructing fair B-spline surfaces with good fea-
ture preservation is still nontrivial, and there is lit-
tle progress on this problem during the last two30

decades.

By contrast, the research of reconstructing fea-
ture preserving 3D meshes is very active in recent
years [4, 5, 6, 7]. In particular, filtering the normal
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field to smooth mesh models seems to have great35

success [8, 9, 10, 7, 11], since the normal vectors
are an important descriptor of the surface shape.
Surface normals are an important concept in other
computer vision techniques as well, such as shape-
from-shading [12, 13, 14, 15].40

In this paper, we propose a new approach to
constructing fair B-spline surfaces, which is radi-
cally different from previous B-spline fitting meth-
ods. Our method consists of three steps: The first
step is to fit a surface without a fairing term, aim-45

ing to capture fine details. The second step, which
is the core of our approach, is to smooth the nor-
mal field of the constructed surface with feature
preservation. We adapt an image processing based
bilateral filtering for feature-preserving normal field50

fairing which works in the parameter domain of the
surface. This is inspired by the impressive simplic-
ity and effectiveness of bilateral filtering for image
smoothing. The third step is to reconstruct the B-
spline surface to match the smoothed normal field.55

This proposed method is simple in both concept
and implementation. The experiments demonstrate
the effectiveness, robustness and applicability of the
method on a variety of examples. The main contri-
butions of the paper lie in three aspects:60

• We propose a three-phase approach for re-
constructing fair B-spline surfaces from point
cloud. The approach adapts the two tech-
niques: normal field fairing and bilateral filter-
ing, which are widely used in digital geometry65

processing, to B-spline surface fitting for better
preservation of surface details and features.

• We formulate the 3D surface fairing problem as
a 2D image smoothing problem, by discretiz-
ing the surface in the parameter space, and70

assigning the normal vector of the surface at
the corresponding grid point. Since the para-
metric speeds [16] of the u and v-isoparametric
curves are not constant in general, we propose
a strategy to adaptively tessellate the surface75

and adjust the grid size to ensure that the sur-
face is sampled appropriately.

• We employ the bilateral filtering in the param-
eter domain to smooth the normal vectors on
the 2D grid. Combined with the adaptive tes-80

sellation, this approach yields efficient feature
preservation.

2. Related work

There is a tremendous amount of literature on
surface fitting, and good references for B-spline sur-85

face fitting can be found in [17, 18, 19, 1, 20]. This
section briefly reviews B-spline surface fairing and
feature-preserving smoothing, which are the major
focus of our work.

2.1. B-spline Surface Fairing90

There are two typical approaches to creating fair
B-spline surfaces [21, 22]: (1) fitting surfaces with
fairing terms (e.g. [2, 3, 23]) and (2) post-processing
(e.g. [24, 21, 25]).

The first approach usually constructs a fairness95

term and adds it to the objective functional of an
optimization problem (see Section 3) to ensure that
the fitted surface is free of noise/wiggles. A com-
mon formulation of the fairness is the thin plate
energy functional which is defined as the surface100

integral of the sum of two squared principal cur-
vatures of the surface. Due to its highly nonlinear
nature, the thin plate energy is often approximated
by the integral of the sum of squared second order
partial derivatives. For a B-spline surface, this ap-105

proximate thin plate energy functional is quadratic
in the unknown control points, which thus yields a
linear system for the optimal solution if the other
terms in the objective functional are also quadratic.
However, employing the thin plate energy or its ap-110

proximation will lead to loss of sharp features in the
fitting process.

The second approach, to which our method be-
longs, is to create a surface first and then to smooth
it in a later stage. Various post-processing sur-115

face fairing methods have been proposed in the lit-
erature. For example, an automatic fairing algo-
rithm based on knot removal and knot reinsertion
for bicubic B-spline surfaces was introduced in [21].
In general, knot removal will increase the order of120

smoothness and the knot reinsertion will keep the
shape of the surface unchanged. To search for the
best knot for removal, a simulated-annealing based
search strategy is used, which is a stochastic global
optimization method and very slow computation-125

ally. Nishiyama et al. [25] proposed another method
for removing irregularities of B-spline surfaces via
smoothing circular highlight lines. A circular high-
light line is formed by the points on a surface, at
which an extended surface normal passes a circular130

light source. The user first interactively identifies
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the irregular portions of the pre-images of each cir-
cular highlight line and then smooths the portions
by cubic Hermite interpolation. Finally the surface
is modified by solving a set of nonlinear equations135

using the Newton-Raphson method to match the
smoothed circular highlight lines, which is expected
to produce a smoother surface. Wang and Zhang
[26] applied a non-uniform spline wavelet trans-
form to simplify and fair NURBS curves and sur-140

faces for modeling, manufacturing, and isogeomet-
ric analysis. The wavelet transform decomposes a
given function into different frequency components,
which could be used to detect and remove high-
frequency noise. However, it is not clear whether145

the proposed method can preserve sharp features.

2.2. Feature Preserving Smoothing

In signal and image processing, denois-
ing/smoothing is a common operation. Many
techniques have been developed for this task,150

among which bilateral filtering is a simple and
effective edge preserving method for images [27],
which works by combining domain and range
filtering. The concept of bilateral filtering has
been adapted for mesh denoising [28, 29], in which155

the information in both tangential and normal
directions of the mesh is combined into the filtering
kernel. This actually produces a very simple and
effective mesh denoising algorithm that preserves
the edges well. Inspired by the success of bilateral160

mesh denoising, various adaptations and exten-
sions have been developed. For example, bilateral
filtering has been applied on surface normals of the
mesh for feature-preserving mesh denoising [11, 7].
Recently, Zhang et al. [9] proposed a joint bilateral165

filtering for meshes, where the range filtering is
applied on a cleverly constructed guidance normal
field, and can provide better feature preserving
denoising compared to the traditional case.

Our work is similar to these works in spirit.170

We smooth the normal field of a B-spline surface
and reconstruct the fair B-spline surface from the
smoothed normal field. However, different from
these works that apply bilateral filtering on the
meshes or the surface normals in 3D space, we con-175

struct normal map images in 2D parameter domain
and employ a bilateral filter in this space to fair the
B-spline surface.

We take such a post-processing approach for fair-
ing the B-spline surface instead of, for example,180

smoothing the point cloud either directly or by tri-
angulation because, even if the input point cloud is

taken from the vertices of a smooth triangle mesh,
fitting the B-spline surface without a fairness term
will still result in wiggles due to the B-spline’s ten-185

sor product structure and relatively less degrees of
freedom of the control points.

3. Overview of the Proposed Surface Fitting

This section presents an overview of our new
framework for B-spline surface fitting. The input190

consists of a set of points, which represents an un-
derlying surface topologically equivalent to a disk,
and its corresponding parameterization on a rect-
angular region. The output is a fair B-spline sur-
face that may contain sharp or semi-sharp features.195

For surfaces with complicated topology structures,
a segmentation process is required and multiple sur-
faces are needed to fit the data. This paper fo-
cuses on single surface fitting for simplicity, how-
ever, the method can be extended to handle mul-200

tiple surface fitting by introducing constraints on
the boundaries. Figure 1 illustrates the workflow
of the proposed framework. It is composed of three
stages: B-spline fitting without a fairness term, nor-
mal field fairing and B-spline reconstruction, which205

are described below.

3.1. B-Spline Fitting without a Fairness Term

We want to find an order (K,L) tensor product
B-spline surface to fit the input point cloud {Qk |
k = 1, 2, . . . , P}. The B-spline surface is defined
by a topologically rectangular set of control points
Pij , 0 ≤ i ≤ m, 0 ≤ j ≤ n and two knot vectors
U = (u0, u1, ..., um+K) and V = (v0, v1, ..., vn+L).
The equation of the surface is

r(u, v) =

m∑
i=0

n∑
j=0

PijNi,K(u)Nj,L(v) , (1)

where Ni,K(u) and Nj,L(v) are B-spline basis func-
tions of orders K and L defined over the knot vec-
tors U and V, respectively.210

We adopt the conventional least-squares approx-
imation. The knot vectors are predetermined by
uniform knots for simplicity or other non-uniform
knot placement approaches [30, 31]. Then, the con-
trol points Pij are found by the following optimiza-
tion problem:

min

P∑
k=1

|r(uk, vk)−Qk|2, (2)
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Figure 1: Overview. We begin with an unfair/noisy B-spline surface (hood) (a), that is fitted without a fairness term. Next,
we discretize its parameter space onto a grid and compute the normal vector at each point, which is visualized as a noisy
normal map in (b). We then apply feature preserving smoothing to obtain a smooth normal map (c), and reconstruct a fair
B-spline surface (d) that matches these smoothed normals as much as possible.

where (uk, vk) are the parameter values of point Qk.
The objective function is quadratic in the control
points of the B-spline surface, and the condition for
its minimum is the vanishing of the partial deriva-
tives with respect to the control points, which re-
sults in a system of linear equations

[Adist]d = b , (3)

where Adist is the coefficient matrix, b is the corre-
sponding right hand side, and d are the (n + 1) ×
(m + 1) unknown control points. If the deviation
criterion is not satisfied, knots are added in both u
and v directions where deviations are large, and use215

for the next surface fit. While conventional surface
fitting approaches often add a fairness term, here,
we only use the fidelity term to pay more attention
to the approximation accuracy, which helps capture
the surface detail. However, the obtained surface220

may contain some unwanted wiggles.

3.2. Feature-Preserving Normal Field Fairing

Observing that when the surface contains wig-
gles, the normal vectors of the surface will exhibit
non-smooth distribution, the process at this stage225

hence filters the normal field to generate a smooth
one. For this purpose, we tessellate the surface reg-
ularly in the parameter domain and compute the
unit normal vector of the surface at the tessellat-
ing points. Then, we view the three coordinates230

of the normal vectors as 8-bit RGB color values to
generate an image for the normal field, and apply
feature-preserving filtering based on the bilateral

filter to smooth this image. Furthermore, consid-
ering possible non-uniform parameterization of the235

B-spline surface, we propose a strategy to adap-
tively partition the surface into a set of segments
such that each segment has approximately uniform
parameterization. With this approach, we obtain
multiple images by uniformly tessellating each of240

these segments, and filter them to produce a set of
smoothed images. The technical detail of this stage
is elaborated in Section 4.

3.3. Surface Reconstruction from Smoothed Nor-
mals245

Assume that we have from the previous stage,
a set of smoothed images: Ih = {nh(k, j) | k =
1, · · · ,Mh; j = 1, · · · , Nh} for h = 1, · · · , H, where
H is the number of images, Mh×Nh is the dimen-
sion of image Ih, and nh(k, j) are RGB values of
Ih actually representing the smoothed normal vec-
tor of the surface at the corresponding point with
parameter values (uhk , v

h
j ). Now, we reconstruct the

B-spline surface from the smoothed normal field,
which is expected to give a fair B-spline surface.
The basic idea is to adjust the positions of control
points of the B-spline surface so that the new sur-
face normal matches with the smoothed normals at
each tessellation point. This is achieved by formu-
lating and minimizing the following energy func-

4



tional:

H∑
h=1

Mh∑
k=1

Nh∑
l=1

((
nh(k, l) · ru(uhk , v

h
l )
)2

+

(
nh(k, l) · rv(uhk , vhl )

)2)
+

m∑
i=0

n∑
j=0

λ
(
Pij − P̄ij

)2

,

(4)

where ru and rv are the partial derivatives of r(u, v)
with respect to u and v-directions, respectively, and
λ is a tradeoff parameter to control how close the
new control points Pij are to the old control points
P̄ij . Here, the first term ensures that the surface250

matches the normals as much as possible while the
second term ensures that the new control points
do not deviate too much from the original control
points. The objective function is quadratic in the
new control points Pij and the necessary conditions255

for a minimum yield a sparse linear system, which
we solve iteratively using the conjugate gradient
method.

4. Image Processing based Normal Field
Fairing260

This section describes the core of the algorithm
for normal field fairing, which consists of two com-
ponents: image generation and bilateral filtering in
the parameter domain. First, a set of images are
generated whose pixel RGB values represent the265

unit normal vectors of the surface. Each of these
images corresponds to a certain region in the pa-
rameter domain of the surface and the union of all
these regions covers the whole parameter domain
of the surface. Then, bilateral filtering which is270

adapted to work in the parameter domain is ap-
plied to each of the generated images to generate a
fair normal field.

4.1. Image Generation

The distribution of the normal vectors reflects the275

variation of the surface shape, and all the normal
vectors of the surface form a normal field. We can
discretize the normal field by uniformly tessellating
the surface in its parameter domain and comput-
ing the unit normal vectors of the surface at the280

tessellating points. If we treat the coordinates of
the normal vectors as RGB values, this results in
an image as the normal map. Specifically, to create
an M ×N image, we can simply compute the unit

normal vector of the surface at the points with pa-285

rameter values
(

i
M−1 ,

j
N−1

)
for i = 0, 1, . . . ,M − 1

and j = 0, 1, . . . , N − 1.
This approach is simple but requires that the

mapping between the 3D B-spline surface and its
2D parameter domain is roughly uniform. If the pa-290

rameterization is far from isometric, the uniformly
generated image will lose the detail in the areas of
high stretch. One brute force approach is to create
a high resolution image with very large values of M
and N , which requires excessive memory and signif-295

icantly increases subsequent computational costs.
To address this issue, we propose an adaptive tes-

sellation method that subdivides the parameter do-
main into different segments such that the paramet-
ric speed within each segment is roughly constant.300

The basic observation is that if the variation of the
parametric speed of u and v iso-parametric curves
is small, the network formed by the iso-parametric
curves on the B-spline surface mapped from a uni-
form grid in the parameter domain can be consid-305

ered uniform in the local area of the 3D surface.
Consider a parametric curve r(u(t), v(t)) lying on

the B-spline surface r(u, v) with the parameter do-
main Ω = [ul, ur]×[vb, vt]. Its differential arc length
is given by

ds =
√

(ruu̇+ rv v̇) · (ruu̇+ rv v̇)dt

=
√
Edu2 + 2Fdudv +Gdv2,

(5)

where E = ru · ru, F = ru · rv and G = rv · rv
are the coefficients of the first fundamental form.
Hence the differential arc lengths of isoparametric
curves become ds =

√
Edu along the u-direction310

and ds =
√
Gdv along the v-direction.

Determining the Image Resolution. We now pro-
vide a way to determine M and N , the number of
sampling points along the u and v directions in the
parameter domain such that the distance between
two sampling points on the surface is bounded by
a prescribed constant LEN . For an isocurve along
the u direction, we have

ds =
√
Edu ≈

√
E
ur − ul
M − 1

≤ max
(u,v)∈Ω

√
E
ur − ul
M − 1

.

Hence, M can be found as long as it satisfies

max
(u,v)∈Ω

√
E
ur − ul
M − 1

≤ LEN , i.e.,

M =

⌈
ur − ul
LEN

max
(u,v)∈Ω

√
ru · ru

⌉
+ 1, (6)
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where d·e is the ceil function. Similarly, we can
compute N , the number of sampling points along
the v direction in the parameter domain, as follows:

N =

⌈
vt − vb
LEN

max
(u,v)∈Ω

√
rv · rv

⌉
+ 1. (7)

With M and N available, it is straightforward to
generate uniform samples in the parameter domain
along u and v directions, to generate a 2D image,
where each pixel is the RGB value of the surface315

unit normal at the corresponding parameter.

Adaptive Tessellation. As mentioned earlier, di-
rectly computing M and N on the entire domain
will result in oversampling to compensate for areas
of high stretch on the surface. To handle this prob-
lem, we adaptively tessellate the domain into multi-
ple images, by checking whether the surface r(u, v)
has approximately constant parametric speeds in
the domain Ω. The variation rates of the two para-
metric speeds are given by:

d2s

du2
=
d
√
E

du
=

ruu · ru√
ru · ru

,

d2s

dv2
=
d
√
G

dv
=

rvv · rv√
rv · rv

.

(8)

By multivariate calculus, we have

ds(u+ δ, v)

du
− ds(u, v)

du
=
d2s(ξ, v)

du2
δ,

for some ξ ∈ (u, u+δ). If we let δ = ur−ul

M , we then
have:∣∣∣∣d2s(ξ, v)

du2

∣∣∣∣ δ ≤ max
(u,v)∈Ω

∣∣∣∣d2s(u, v)

du2

∣∣∣∣ ur − ulM
.

As long as

1

M
max

(u,v)∈Ω

|ruu · ru|√
ru · ru

(ur − ul) ≤ ε, (9)

for a prescribed threshold ε , the surface r(u, v) is
considered to have approximately constant para-
metric speed in the u direction in Ω. Otherwise,
we can subdivide the interval [ul, ur] in the middle
and check the inequality in the two sub-intervals.
This process can continue till the inequality is sat-
isfied. Similarly, the inequality condition for the v
direction is

1

N
max

(u,v)∈Ω

|rvv · rv|√
rv · rv

(vt − vb) ≤ ε. (10)

(a) Uniform tessellation (b) Adaptive tessellation

Figure 2: Uniform and adaptive tessellation of the parameter
domain of the mouse model shown with a low-resolution ex-
ample for clarity. Given a prescribed parameter LEN (here
set to 5% of the length of the longest diagonal), adaptive
tessellation takes steps that are larger on average (avg. step:
68% of LEN , #pixels: 2622) resulting in fewer number of
pixels compared to uniform tessellation (avg. step: 45.6% of
LEN , #pixels: 4209).

By combining all the above derivations and dis-
cussions, we can easily design a recursive function
to subdivide the surface domain and create a set of
images, as shown in Algorithm 1 in pseudo-code.320

An example of such adaptive tessellation of the
Mouse model is shown in Figure 2, and the cor-
responding result is shown in Section 5. Here, the
intersection of black grid lines are the tessellation
samples, while each of the tiny rectangles corre-325

sponds to a pixel in the normal map image. Note
how the total number of pixels is much lesser for
the adaptive tessellation even while satisfying the
prescribed bound on the step length LEN .

4.2. Bilateral Filtering in Parameter Domain330

We now describe our approach to filter the nor-
mal map images. Bilateral filtering is a simple and
effective edge-preserving image smoothing method
[27]. Its main idea is to update the image I(p) at
pixel p = (i, j), as a weighted combination of its
neighbors q ∈ N(p):∑

q∈N(p)

Wσs
(‖p− q‖)Wσc

(‖I(p)− I(q)‖)I(q)∑
q∈N(p)

Wσs
(‖p− q‖)Wσc

(‖I(p)− I(q)‖)
,

(11)

where Wσs(x) = e−‖x‖
2/2σ2

s and Wσc(c) =

e−‖c‖
2/2σ2

c are the spatial and color Gaussian ker-
nels with parameters σs and σc used to penalize
large variation in position and intensity, respec-
tively.335
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Algorithm 1 Pseudo-code for image generation

Require:
LEN : upper bound on step length
ε: threshold for parametric speed
ImageList : empty list to store images

1: procedure GenImages(r, ul, ur, vb, vt)
2: Ω← [ul, ur]× [vb, vt].
3: Compute M and N . Eqs.6 and 7.

4: Pu ← 1
M max

(u,v)∈Ω

|ruu·ru|√
ru·ru . Eq.9

5: Pv ← 1
N max

(u,v)∈Ω

|rvv·rv|√
rv·rv . Eq.10

6: if ur − ul ≤ ε
Pu

and vt − vb ≤ ε
Pv

then
7: Create image I of dimension M ×N
8: n̂ij ← unit surface normal at

r
(
ul + i

M (ur − ul), vb + j
N (vt − vb)

)
9: I[i, j]← RGB(n̂ij)

10: push I into ImageList
11: return
12: else if ur − ul > ε

Pu
and vt− vb ≤ ε

Pv
then

13: GenImages(r, ul,
ul+ur

2 , vb, vt)
14: GenImages(r, ul+ur

2 , ur, vb, vt)
15: else if ur − ul ≤ ε

Pu
and vt− vb > ε

Pv
then

16: GenImages(r, ul, ur, vb,
vb+vt

2 )
17: GenImages(r, ul, ur,

vb+vt
2 , vt)

18: else if ur − ul > ε
Pu

and vt− vb > ε
Pv

then

19: GenImages(r, ul,
ul+ur

2 , vb,
vb+vt

2 )
20: GenImages(r, ul,

ul+ur

2 , vb+vt
2 , vt)

21: GenImages(r, ul+ur

2 , ur, vb,
vb+vt

2 )
22: GenImages(r, ul+ur

2 , ur,
vb+vt

2 , vt)
23: end if
24: end procedure

The formulation in Eq. 11 is used in common im-
plementations of the bilateral filter, e.g., OpenCV,
and computes the spatial distance between the
neighboring pixels in the image space by using the
row and column indices. With adaptive tessella-340

tion, the images generated by our method are of
different resolutions, hence, the distance between
neighboring pixels is not constant among different
images. In detail, the distance between each of the
neighboring pixels is given by the 1

M−1 along the u-345

direction and 1
N−1 along the v-direction, with dif-

fering values of M and N for each of the images.
Hence, it is not accurate to measure distances us-
ing image indices, and we formulate the bilateral
filter to work with u and v values in the parame-350

ter domain by defining the coordinate of a pixel as
p = (ui, vj) in the above formulation. With this
modification to the spatial component of the bilat-
eral filter, a fair normal map image can be com-
puted by applying Eq. 11 to each pixel, and then355

updating the values of all pixels as a group.

Remark. We note that, since it is generally not pos-
sible to have an isometric parametrization for 3D
shapes with non-zero Gaussian curvature, measur-
ing distances on the parameter domain may seem to360

be inaccurate. However, since our adaptive tessella-
tion method partitions the parameter domain into
sections with roughly constant parametric speeds,
we found the distance measurements to be good
enough for our problem. To verify this, we replaced365

the distance component of the above formulation
with a spatial Gaussian kernel in 3D space that ap-
proximately computes the geodesic distance. By
comparing the filtering results, we observed that
in terms of fairing the surface, measuring distances370

on the parameter domain was good enough and did
not introduce any unwanted artifacts, thanks to the
adaptive tessellation.

Implementation. Recall from Figure 2 that the
rectangles bounded by the thick black lines are im-375

ages with different resolutions. For pixels on the
interior of these images, the bilateral filter imple-
mentation is similar to conventional image-based
filters. For pixels close to and along the boundary,
we need to obtain neighbors that lie outside the im-380

age. Each image has a fixed step size 1/(M−1) and
1/(N − 1) along the u− and v−directions, and its
pixels have corresponding (u, v) values. From this,
we can easily sample the parameter domain directly
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to obtain the pixels that lie outside each image, but385

are still within the B-spline surface’s preimage.

5. Results & Evaluation

In this section, we demonstrate the effective-
ness of our algorithm by applying it to five mod-
els: twisted cuboid, hood of an automobile, a390

computer mouse, a fandisk patch, and a boat.
We acquired the point cloud of the hood model
by first 3D printing it, and then using laser scan-
ning as shown in Figure 3. The point clouds of
mouse, fandisk, and boat are all obtained from395

mesh models. Table 1 lists the parameters used to
generate the results of these models shown in this
paper. Here, LEN is given as a normalized value
with respect to the surface’s longest diagonal, the
actual value is given in parentheses; filter size (in400

pixels) is the neighborhood considered for filtering.

5.1. Computational Time

We implemented our algorithm in C++ on a PC
running Windows 10 with a core i7-6800-K 3.40
GHz processor with 32 GB of RAM. Table 2 lists405

the computational time for fitting with thin-plate
energy fairing term and our post-processing surface
fairing for the five models. Note that the computa-
tional time of our method includes both fitting and
the post-processing time. We can observe that the410

computational time for fitting with thin-plate en-
ergy fairing term is almost the same as that of fit-
ting without fairing. While our post-processing sur-
face fairing requires a few extra seconds, it is clear
from the results and experiments in Section 5.2 that415

it significantly preserves features in contrast to the
thin-plate functional. Note that we did not inten-
tionally optimize our implementation for best per-
formance, and leave it as future work.

5.2. Visual Inspection420

We examine the extent of feature preservation,
and the fairness of the resulting surfaces by visu-
alizing the Gaussian curvature color maps and ze-
bra maps (reflection lines). Figure 4 depicts the
results of our method applied to the hood model.425

It is apparent from the close up views and zebra
maps that our method not only fairs the surface,
but also preserves the sharp features of the surface.
This is further confirmed by the narrow bands of
high Gaussian curvature close to the sharp features.430

Similarly, we next demonstrate our results for the

fandisk, twisted cuboid, computer mouse, and
boat models in Figures 5&6. Again, we can ob-
serve that the sharp features are well preserved.

We note that sharp features may at times not435

lie on the isoparametric lines, e.g., see the mouse
and boat models. Our method works reasonably
well even in such cases as shown in Figure 6, how-
ever, our optimization in Section 3.3 might possi-
bly result in control points that oscillate around440

the features. This is a long standing problem in
spline fitting, and employing feature-aware surface
parametrization techniques for B-splines [32, 33] or
T-splines [34] can alleviate the issue.

5.3. Evaluation: Adaptive Tessellation445

We now evaluate the effect of our adaptive tes-
sellation method. Recall that the parameter LEN
is the upper bound of the step length taken on the
surface during tessellation, i.e., the corresponding
dimension of each pixel on the surface. To demon-450

strate the efficiency of our method, we perform
both uniform and adaptive tessellation on each of
the models, and measure some statistics: number
of pixels generated,the average step length of the
tessellation, and the computational time for post-455

processing (does not include the fitting time).
Ideally, we prefer a tessellation that respects the

bound set by LEN , and is on average close to this
value, while keeping the number of samples as low
as possible. From the tessellation statistics shown460

in Table 3, we can see that images generated using
our adaptive tessellation are superior in both these
criteria, which corresponds to higher efficiency dur-
ing filtering and reconstruction. Figure 7 shows
that the resulting surfaces are virtually indistin-465

guishable.

5.4. Evaluation: Fitting Error

In twisted cuboid, Hood, Mouse and Fan-
disk, the termination criterion for fitting was set
such that the maximum and the root mean squared470

distance errors normalized by the diagonal of the
bounding box of each model, are within εmax < 0.5
and εrms < 0.2, respectively.

We quantitatively evaluate our results with those
obtained using the thin-plate fairing term in terms475

of εmax and εrms, by computing the corresponding
distances from the point cloud, see Table 4. Since
our fairing method is based on post-processing,
the maximum error of certain models, e.g., hood,
mouse, and twisted cuboid, exceeded the termi-480

nation criterion after the fairing. Therefore, to
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Figure 3: Automobile hood model. Left-to-right: Ground truth B-spline surface model, created by a 3D printer, and scanned
by a laser scanner.

Figure 4: Comparison results for automobile hood model. Left-to-right: B-spline surface fitted without a fairing term, fitted
with thin-plate energy fairing term, and without a fairing term but post-processed by our method. Top-to-bottom: Shaded
images, close-up views, zebra maps and Gaussian curvature color maps.
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Figure 5: Comparison results for fandisk and twisted cuboid. Left-to-right: Ground truth triangle mesh model, B-spline
surface fitted without a fairing term, fitted with thin-plate energy fairing term, and fitted without a fairing term but post-
processed by our method. Top-to-bottom: Alternate rows represent rendered results of the models, their corresponding close-up
views and zebra maps.
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Figure 6: Comparison results for mouse and boat. Left-to-right: Ground truth triangle mesh model, B-spline surface fitted
without a fairing term, fitted with thin-plate energy fairing term, and fitted without a fairing term but post-processed by our
method. Top-to-bottom: Rendered results of the models, their corresponding close-up views and zebra maps.
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Table 1: Parameters used for generating our results.

Image generation Filtering Reconstruction
Model LEN ε #iterations Filter size σc σs λ

Twisted 0.020(0.768) 120 1 6 20.0 0.10 220.0
Hood 0.030(3.092) 65 2 7 40.0 0.25 150.0
Mouse 0.015(1.250) 52 1 10 30.0 0.20 100.0
Fandisk 0.020(0.747) 17 1 8 50.0 0.27 100.0
Boat 0.015(0.730) 11.5 1 10 60.0 0.30 100.0

Table 2: Comparison of computational time.

Running time (s)
Model Thin-plate energy Our method

Twisted 57.6 52.9
Hood 9.46 12.2
Mouse 60.5 64.1
Fandisk 2.14 3.67
Boat 12.9 18.4

Figure 7: Visual comparison of boat (top) and mouse (bot-
tom) surfaces fitted with adaptive tessellation (left) and uni-
form tessellation (right).

make the comparisons with the thin-plate fairing
method on the same ground, we set εmax smaller
than 0.5 in the fitting for those models. While the
root mean squared distance errors of our results are485

larger than the thin-plate faired models, these er-
rors are within 0.2, which is generally a sufficient
quality for industrial objects.

6. Conclusion

We have described a novel feature-preserving fair-490

ing method for B-spline surfaces, which is conceptu-
ally simple and easy to implement. Our main con-
tributions include the novel formulation that con-
verts the 3D B-spline surface fairing problem into a
2D image filtering problem, an adaptive tessellation495

method that generates a set of normal maps with
approximately uniform distribution, and bilateral
filtering in the parameter domain that preserves
features well. We have applied our method to vari-
ous freeform surfaces with a variety of smooth and500

sharp features, and demonstrated the versatility of
our algorithm through quantitative and visual ex-
periments. We plan to explore ways to extend our
method to handle multiple surfaces, NURBS and
T-splines in future. Additionally, we would like to505

experiment with the application of other image pro-
cessing filters to the post processing step.
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Table 3: Tessellation statistics.

Uniform Adaptive
Model #pixels Avg. step time (s) #pixels Avg. step time (s)

Twisted 57661 0.218 18.7 6820 0.514 2.94
Hood 45981 0.723 14.5 11275 1.465 4.47
Mouse 32448 0.651 9.64 26225 0.737 8.15
Fandisk 5510 0.481 1.87 4547 0.539 1.71
Boat 34780 0.401 10.8 23147 0.530 8.61

Table 4: Comparison of distance errors.

Thin plate energy Our method
Model #CP Max error (%) RMSE (%) #CP Max error (%) RMSE (%)
twisted 47×14 0.488 0.0444 45×12 0.499 0.118
Hood 23×32 0.499 0.108 21×30 0.436 0.121
Mouse 30×36 0.494 0.0578 30×36 0.448 0.153
Fandisk 12×28 0.455 0.0882 11×27 0.455 0.0609
Boat 34×34 0.491 0.0407 32×32 0.467 0.109
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