
2.5D Cartoon Hair Modeling and Manipulation
Chih-Kuo Yeh, Pradeep Kumar Jayaraman, Xiaopei Liu, Chi-Wing Fu,Member, IEEE, and

Tong-Yee Lee, Senior Member, IEEE

Abstract—This paper addresses a challenging single-view modeling and animation problem with cartoon images. Our goal is to model

the hairs in a given cartoon image with consistent layering and occlusion, so that we can produce various visual effects from just a

single image. We propose a novel 2.5D modeling approach to deal with this problem. Given an input image, we first segment the hairs

of the cartoon character into regions of hair strands. Then, we apply our novel layering metric, which is derived from the Gestalt

psychology, to automatically optimize the depth ordering among the hair strands. After that, we employ our hair completion method

to fill the occluded part of each hair strand, and create a 2.5D model of the cartoon hair. By using this model, we can produce various

visual effects, e.g., we develop a simplified fluid simulation model to produce wind blowing animations with the 2.5D hairs. To further

demonstrate the applicability and versatility of our method, we compare our results with real cartoon hair animations, and also apply our

model to produce a wide variety of hair manipulation effects, including hair editing and hair braiding.

Index Terms—Cartoon, still image animation, 2.5D modeling, layering, single-view modeling

Ç

1 INTRODUCTION

SINGLE-VIEW modeling and animation is a challenging but
valuable computer graphics problem. From just a single

image, it aims to reconstruct the image contents for produc-
ing appealing visual effects with very little user input. Since
there is very limited information in a single image, the prob-
lem is highly challenging, but at the same time, it is also
highly valuable because it requires very little data prepara-
tion effort, and yet can deliver visually-pleasing results.

Several pioneering works have been proposed to deal
with this research problem on different kinds of input
images. For example, Lin et al. [1] generated animated vid-
eos from a small collection of high resolution stills by tem-
poral ordering and a second-order Markov chain model. Xu
et al. [2] created believable animations of animals by analyz-
ing the motion of animal groups in a single image, while
Okabe et al. [3] animated fluids in images by extracting their
motion patterns from video examples. More recently, Chai
et al. [4] animated hairs in a real photo by estimating hair
direction field and reconstructing the hair volume.

Inspired by the above works, this work takes cartoon/
manga images as input instead of real world photos, and aims
to analyze the image contents for animating and editing the
cartoon hair in an input image. This work is driven by the fact
that hair animation is very common in cartoon anime. If we
are able to produce a 2.5D hair model from a cartoon image,
we can effectively produce a wide variety of intriguing visual
effects such as hair animation and editing. For example, we

can present a cartoon character with hair blown by the wind,
andmanipulate his/her hair with proper layering.

However, such a modeling problem is technically very
challenging: since the given cartoon image is just 2D, while
animating/editing the hairs requires at least a 2.5D under-
standing of the image contents. In particular, we need to
layer the hair strands and simulate their movement to create
visually-plausible animations, while attempting to retain
the artist’s expressive style in the original drawing. This
is very different from traditional methods, where artists
manually draw the keyframes.

In this work, we take a 2.5D approach since 2.5D meth-
ods are often employed in cartoon modeling and animation.
For example, Rivers et al. [5] and Yeh et al. [6] showed the
simplicity and effectiveness of taking 2.5D approaches to
rapidly model and manipulate cartoon characters. More-
over, the general public is used to the 2D visual style of car-
toons, and 2.5D approaches can help retain the artist’s
drawing style. Furthermore, 2.5D hair models are sufficient
for our problem since we take 2D cartoon images as inputs,
and by reconstructing a 2.5D hair model, various cartoon
hair animation and manipulation effects can be achieved
without tediously reconstructing a 3D hair model.

In summary, we propose a novel three-fold solution to
handle the problem: (i and ii) new layering and completion
methods to construct a 2.5D hair model from a still cartoon
image; and (iii) a deformation strategy to animate 2.5D hairs
based on fluid simulations. Our layering method relies on a
simple and effective metric derived from the Gestalt psy-
chology to automatically identify and optimize the layering
among the hair strands. Moreover, hair layers from 2D seg-
mentations could be incomplete due to occlusion; our layer
completion method can automatically resolve this issue,
and avoids holes in the hair animation. Then, we generate
skeletons of hair strands, and devise a simplified 2D fluid
simulation model to produce wind-blown hair animations.
To evaluate the quality of our results, we conduct a compar-
ative study to examine hair animations produced by our
methods and conventional cartoon anime. Lastly, to show

� C.K. Yeh and T.Y. Lee are with the Department of Computer Science and
Information Engineering, National Cheng-Kung University, Taiwan,
People’s Republic of China. E-mail: simpson.ycg@gmail.com;
tonylee@mail.ncku.edu.tw.

� P.K. Jayaraman, X. Liu and C.W. Fu are with the School of Computer
Engineering, Nanyang Technological University, Singapore.
E-mail: pradeep.pyro@gmail.com; liuxp@ntu.edu.sg; cwfu@ntu.edu.sg.

Manuscript received 21 Apr. 2014; revised 18 Aug. 2014; accepted 16 Sept.
2014. Date of publication 24 Sept. 2014; date of current version 30 Jan. 2015.
Recommended for acceptance by J. Keyser.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2014.2360406

304 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 3, MARCH 2015

1077-2626� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Simpson
Typewritten Text
███

the applicability of our method, we demonstrate a wide
variety of hair animation and manipulation effects with our
2.5D hair models.

2 RELATED WORK

Note that there has been a large volume of research work on
hair modeling; due to space limit in the paper, we cannot
provide a complete overview of them.

Realistic hair modeling. There are three major approaches
to model realistic hair: geometry-based, physically-based,
and image-based. Geometry-based methods model the hair
by using curves and surfaces. The trigonal prism wisp
model [7], [8] clusters adjacent hair strands as continuous
trigonal prisms linked by B-splines. Kim and Neumann
employed a thin shell volume [9] with parametric surfaces
and particles to model the hair surface and strands; they
further proposed a multi-resolution hair model [10] using a
hierarchy of generalized cylinders and polylines to enable
global and local editing. Yuksel et al. [11] later developed
an interactive hair modeling and styling tool to generate
hair strands within simple polygonal meshes.

Physically-based methods attempt to simulate hair based
on its physical properties. Hadap and Magnenat-Thalmann
considered fluid flow around an obstacle as analogue of
human hair [12]; they modeled hair-hair and hair-body
interactions while considering the stiffness and inertial
dynamics of individual strands [13]. Choe et al. [14] solved
for the static deformation shapes of different hair styles
while considering various physical factors. Selle et al. [15]
modeled the physical properties of a single hair by a mass-
spring model.

Image-based techniques aim to reconstruct the hair
structure from single or multiple images. Paris et al. cap-
tured intricate hair geometry by using a fixed camera and
varying light sources [16], as well as by a dome-like
setup with multiple cameras, controllable LEDs, and
video projectors [17]. Herrera et al. [18] employed simpler
hardware setup and captured images with a hand-held
thermal camera to generate accurate hair strands from the
temperature orientation. Chai et al. [4] estimated the 3D
hair direction field of human hair from single images and
short video sequences, and reconstructed the hair volume
for interactive editing. Luo et al. [19] employed a collec-
tion of images to reconstruct a 3D hair model by perform-
ing clustering, connection, and direction analysis to grow
long hair strands.

Since we work with cartoon-style hair, we do not adopt
these methods. Instead, we propose a novel single-view
hair modeling method based on 2.5D modeling.

Cartoon hair modeling. Unlike realistic hair modeling, car-
toon hair modeling aims to support computer-assisted car-
toon production by non-photorealistic rendering of hair.
Sakai et al. [20] modeled cartoon hair by using the implicit
surface generated from 3D hair skeletons. Sugisaki et al. [21]
applied physical simulations on a 3D mesh, and matched
user-drawn keyframes to a manually-created motion data-
base for hair motion interpolation. In contrast, Shin et al. [22]
proposed a particle-based method that considered each hair
strand as a sparse-hair model with multiple particles. While
these works focused on accurate modeling of cartoon hair

from scratch, we tackle a different problem: given the
immense availability of 2D digital cartoon images, e.g.,
manga and anime, we aim to construct a 2.5D model of hair
strands to support visually-plausible hair animation and
editing. Most of the existing works are 3D methods, whereas
we adopt a novel and simpler approach based on 2.5D
modeling of 2D images. To the best of our knowledge, this is
the first work we aware of in modeling image-based cartoon
hair from 2.5D perspective, allowing us to retain the original
art style while achieving rich animation effects.

2.5D cartoon modeling. 2.5D methods create complex
scenes by layering 2D graphics at different depths. McCann
and Pollard [23] generalized the layering concept: 2D
graphics can partially occlude one another, or even with
themselves by local layering. Rivers et al. [5] combined 2D
vector drawings in different views to create a 2.5D model
that can be rotated arbitrarily. Wiley [24] presented a 2.5D
drawing system, which can handle self-intersections of
layers by labeling the intersecting boundary curves. Zhang
et al. [25] extracted temporally-consistent layer information
from cartoon videos by propagating manually-marked layer
labels among frames. Liu et al. [26] produced stereoscopic
visual effect for 2D cartoon videos by employing T-junction
cues to extract layer information combined with inpainting
to fill the occluded pixels. Yeh et al. [6] enriched 2.5D
modeling with assorted effects by considering 2D graphics
with both front and back sides.

This work is similar in theme to [25], [26], but recon-
structs 2.5D hair models from single-view 2D cartoon
images to support cartoon hair animation and manipula-
tion. Compared with [25], [26], which consider sequence of
video frames as input, our input is only a single image. Our
method can automatically infer the hair layering order from
junctions and region overlaps among segmented hair layers,
and complete the occluded hair strands. This cannot be
achieved by existing methods, and is technically very chal-
lenging because our input does not have any depth informa-
tion. Yet, from the experiments, our results are stable and
consistent with human judgment, allowing us to deliver
various hair animation and manipulation effects.

3 OVERVIEW

Fig. 1 overviews the major steps in our 2.5D modeling
approach with a running example.

Segmentation. For the segmentation step, we first con-
struct a 2D mesh as a coarser representation of the input
image because it is computationally more efficient. To do
so, we detect contours by the curve extraction method in
[27] (see Fig. 2 (left)) as it produces fewer and nicer con-
nected contours when compared to conventional edge
detection methods. First, we find all endpoints and junc-
tions from these curves and keep them fixed. Then, we
smooth the curves by Gaussian filtering, and iteratively sim-
plify them using the Douglas-Peucker algorithm [28].
Finally, constrained Delaunay triangulation [29] is used to
partition the image (see Fig. 2 (middle)).

Next, we build a graph G ¼ ðV;EÞ, where the nodes in V
and edges E correspond to faces and edges of the mesh,
respectively. We adopt a mesh-based graph-cut segmenta-
tion method [30] to segment out each hair strand with

YEH ET AL.: 2.5D CARTOON HAIR MODELING AND MANIPULATION 305

markups (see Fig. 2 (right)). The weights of the edges e 2 E
are set as wðeijÞ ¼ ’ijkeijk, where ði; jÞ 2 V ; k � k is the norm

operator for computing the edge length; ’ij is used to penal-

ize the cost of cutting through edges corresponding to
homogeneous regions in the image, and is set to be 0 for
extracted curves, and 30 otherwise. Moreover, we employ
terminal weights in the graph-cut process, and model the
foreground and background by a Gaussian mixture model;
our background model B is P ðC;DjBÞ ¼ 1� P ðC;DjF Þ,
where P ðC;DjF Þ is the joint probability that measures color
similarity C and point distance D to the foreground stroke
F . By this, we can reduce the amount of background strokes
needed for the segmentation. Note that our method can
work with gradients/shading if the hair strands have clear
boundaries, but still, other curve extraction or segmentation
methods, e.g., [31], may also be used.

Hair modeling. After segmenting out each hair strand (see
Fig. 1a and 1b), we automatically estimate the layering of
hair strands from the segmented regions (see Fig. 1c) based
on an analytical method we derived from psychological and
experimental observations. Then, we devise a new geomet-
ric completion method based on the active contour model to
fill the occluded parts in each hair strand (see Fig. 1d).
Lastly, we generate the skeletons (see Fig. 1e) to enable hair
animations.

Hair animation and manipulation. We may use keyframe-
based methods to animate the hair skeletons, but they lack
visual realism and are tedious. Hence, we devise a simpli-
fied 2D elastic model and perform a fluid simulation to ani-
mate the hair mesh, (see Fig. 1f). Other than animation, we
can also perform various hair manipulation effects, e.g.,
hairstyle editing (see Section 7).

4 CARTOON HAIR LAYERING

To ensure proper occlusion among hair strands when we
animate and manipulate them, we next determine their
depth ordering (henceforth called layering). Previous meth-
ods mainly focus on general layering problems, requiring

either tedious manual specification [32] or extensive datasets
for machine learning [33]. A recent method by Palou and
Salembier [34] also employed T-junctions to resolve the
layering, but their results show only a few number of seg-
mented regions, and the method deals with basic T-junction
cases only. In contrast, our layering method is fully auto-
matic; it does not require extensive datasets for learning,
and can handle rather complex hair layering cases with arbi-
trarily shaped junctions.

4.1 Junctions and Cusp Points

Junctions are corner points shared among three or more
image regions. See the junctions shown in Fig. 3. They are
effective visual cues [35] for determining the layering. How-
ever, not all junctions are meaningful for layering. If a junc-
tion is located on a contour edge without depth occlusion,
see the zoom-in images in Fig. 3, we call it a cusp point, and
will not use it when determining depth ordering between
related image regions. Hence, before we compute the layer-
ing later in our pipeline, we first have to identify cusp
points among the junctions.

The procedure to identify cusp points among junctions
is as follow: If a boundary line around a hair strand is
found to be on a contour line in the input cartoon image
(by summing up the local Laplacian along it), we regard
it as an occluding boundary, see again Fig. 3. Otherwise, it
is non-occluding, and we label its end-point junctions as
cusp points. Note that in this paper, we use the equal
sign (¼), arrow (!), and bidirectional arrow ($) to
denote three possible layering cases between neighboring
regions, see again Fig. 1c, say A and B: A ¼ B means the
same depth; A ! B means B above A; and A $ B means
an ambiguous order.

4.2 The Junction Metric FJ

To employ junctions for layering, we first look at the amodal
completion law in the Gestalt psychology [35]:

Fig. 2. Left: edge extraction; middle: constrained Delaunay triangulation;
right: markups for segmenting hair strands.

Fig. 3. Junctions (both yellow triangle and white square) and cusp points
(yellow triangle).

Fig. 1. Overview of our 2.5D approach. Note that in subfigure (c) above, the orange arrows show the depth ordering, i.e., pointing from occludees
(lower layer) to occluders (upper layer), whereas the ¼ signs denote same depth ordering; in subfigure (d) the light blue color represents the
completed hair region.

306 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 3, MARCH 2015

“When a curve, sayCB, stops on another curve, say
CA, thereby producing a T-junction, our perception
tends to interpret CB as the boundary of an object
being occluded by the object associatedwithCA.”

Fig. 4 illustrates this law. As a notation, we name the
regions associated with CA and CB as A and B, respectively,
and denote the angles subtended by A and B at the junction
as a and b, respectively. In the ideal case, a ¼ p and
b ¼ p=2; and we tend to interpret B as the occludee and A
the occluder.

In the general case, CA and CB are arbitrary curves, see
Fig. 4 (right), so they may not intersect at a right angle to
give a layering perception [35], see Property 1:

Property 1. If a is close to p and b is close to p=2, we regard A as
on top of B, i.e., B ! A.

Moreover, based on observation with cartoon hairs, see
Fig. 5, we develop three additional properties for layering.
To begin, we first define the concept of angles domain for junc-
tion angles a and b. Since they are located at a common 2D
junction, their sum should not exceed 2p. Moreover, without
loss of generality, we assume a to be a larger angle, i.e.,
a � b. Hence, the domain of a and b is basically the lower
quarter of ½0; 2p� � ½0; 2p�, which is the green area in Fig. 6a.

Property 2. If a � b, the junction metric should not suggest any
ordering preference, i.e., A $ B.
This is based on the fact that when a and b have similar

sizes, see Fig. 5 (example 1), we should not arbitrarily
decide a layering between their related image regions solely
by a and b, see Fig. 6c.

Property 3. If a+b � p, the junction metric should not suggest
any ordering preference, i.e., A $ B.
This relates to a cartoon-hair situation, where multiple

hair strands go below another hair strand altogether, see
Fig. 5 (example 2). In this case, a+b � p, and we again
should not arbitrarily decide a layering between the two
related regions solely by a and b, see Fig. 6d.

Property 4. If b is close to 0 while a is not close to 0 or p, we
regard B as on top of A, i.e., A ! B.
This property is related to another common situation

with cartoon hairs (particularly due to image rasterization),
where a hair tip lands on the edge of another hair strand,
see Fig. 5 (example 3). Concerning this, when we compare a
and b, we regard the region with a tiny sharp angle to be on
the top because hair regions with sharp angles are very
likely to be hair tips, i.e., b, which is the smaller angle, is
close to zero. However, since we have to avoid the situa-
tions related to Properties 2 and 3, a should not be close to
zero or p at the same time, see the blue areas in Fig. 6e.

To capture the above layering properties, we design and
formulate the following junction metric FJ :

FJða;bÞ ¼
��ða mod pÞ � p=2

��� ��ðb mod pÞ � p=2
��;

where mod is the modulus operator; the sign of FJ indi-
cates the layering order between A and B while its magni-
tude indicates the tendency: if FJ � 0, A $ B; if FJ > 0,
B ! A, and vice versa. Note that when a � p and b � p=2,
FJ is relatively large and positive, indicating A as on top,
and when a � p=2 and b � p, FJ is relatively large and neg-
ative, indicating the opposite situation. Moreover, FJ also
fulfills properties 3 and 4, which are related to cartoon hairs.
Note also that to avoid rasterization noise when computing
junction angles, we fit a short boundary curve from each
junction point around the segmented region.

4.3 The Region Overlap Metric FR

Another local feature we employed for computing the layer-
ing is region overlap, which is also motivated by the amodal
completion law. Given regionsA and B with junction points
p1 and p2 (see Fig. 8), we first construct a straight line from p1
to p2, say LAB, and then, define the region overlap metric as

FRðA;BÞ ¼ dA � dB ;

where dA and dB are the area of A’s and B’s portion on the
right and left of LAB, respectively. For the example shown
in Fig. 8, dA is the shaded portion of A to the right of LAB
while dB is zero. Hence, FR is positive, suggesting A as on

Fig. 4. Estimating the layering from junction angles: Left: an ideal case,
and Right: a general case.

Fig. 5. Example Cartoon Hairs for Properties 2, 3 and 4.

Fig. 6. (a) Domain of junction angles a and b; (b-e) Properties that define
the junction metric for layering.

YEH ET AL.: 2.5D CARTOON HAIR MODELING AND MANIPULATION 307

top of B. In detail, we implement the computation by using
half edge data structure to represent the segmented hair
regions and arranging the edges in anticlockwise order.
Hence, we can use the Green’s theorem to compute the
signed area of dA or dB, which is FR.

4.4 The Layering Metric F

Given neighboring regions A and B, our layering metric F
combines junction metric FJ and region overlap metric FR

to determine the layering order between them:

FðA;BÞ ¼ w � F̂JðA;BÞ þ FRðA;BÞ=jLABj2 ; (1)

where F̂JðA;BÞ ¼ sðp1ÞFJða1;b1Þ þ sðp2ÞFJða2;b2Þ denotes
the sum of FJs at the two junction points between A and B,
and sðpÞ is 0 if p is a cusp point, otherwise 1. This sðpÞ helps
to avoid FJ at cusp points. To normalize the area in FR, we

divide FR by jLABj2, and use a weighting term w (set to be
0:25) to balance the twometrics. Again, a positiveF indicates
A as on top of B similar to FJ and FR, and vice versa. Fig. 7
shows two examples, where we can successfully determine
the local layering order by combining the strengths of FJ

andFR.

4.5 Layering Optimization

Since the layering metric is local, it may not ensure global
consistency. Hence, we develop the following combinatorial
optimization method to address this issue. First, we calcu-
late the layering order between all pairs of neighboring
regions using Eq. (1). Then, we construct an undirected
graph G0 ¼ ðV 0; E0Þ, where nodes in V 0 correspond to the
shared (occluding) boundaries between hair regions, and
edge eij in E connects nodes (shared boundaries) that share
a common junction point in the cartoon image. Note that G0

is a dual of G, see Section 3. Next, we define xi 2 f�1;þ1g

as an unknown variable, which indicates two possible states
{below, above} of each node, and solve for xi by energy
minimization:

argmin
fxig

�
X
i2V 0

FðviÞxi �
X
eij2E0

fijxixj

2
4

3
5 ; (2)

where the first term is the layering metric F from Eq. (1),
while the second term considers edges eij 2 E0, i.e., neigh-
boring boundary contours in the cartoon image: fij ¼
tanðjðuij mod pÞ � p=2

��Þ, and uij is the angle between the cor-

responding boundary lines at the junction. The key idea here
(see Fig. 10) is: if two neighboring boundary contours are
smoothly connected at a common junction, i.e., uij � p, they
tend to have the same state. After the optimization, we can
then obtain a local layering order between every pair of hair
regions, and apply topological sort to further compute the
rendering order among them.

5 CARTOON HAIR COMPLETION

To avoid holes in hair animation and manipulation, we
next have to complete the hair strands, see Fig. 9. Single-
view image completion has always been a challenging
problem because the hidden parts are unknown and could
have arbitrary shapes. Since we focus on hair animation
and manipulation, we do not need a general completion
method to fully reconstruct the hair strands, i.e., until they
reach the cartoon character’s head. Rather, we develop an
efficient and practical solution for completing 2.5D cartoon
hair, capable of delivering various hair animation and
manipulation effects.

Our method considers three cases of cartoon hair com-
pletion, see Fig. 11a, 11b and 11c: The first case happens
when two hair strands intersect each other, so the one
behind is divided into two disconnected regions. The sec-
ond case happens when the root part of a hair strand (closer
to the head) is occluded by other hair strands, whereas the
third case happens when the tip part of a hair strand (far
away from the head) is occluded by others.

Fig. 7. Case 1: FR does not work because the estimated overlap region
is too small. Case 2: FJ does not work due to layering Property 2. By
combining FJ and FR, they complement each other, and help solve the
layering for both cases.

Fig. 9. 2.5D hair completion for animation and manipulation. Left: without
completion; right: with completion.

Fig. 8. Region overlap metric. By using Green’s theorem, we estimate
the signed area of the overlapping region.

Fig. 10. Layer optimization. xi and xj are two neighboring layering
states. They have to be in the same direction when uij � p.

308 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 3, MARCH 2015

5.1 Case 1: Intersecting Hairs

To identify intersecting hairs, our method starts by match-
ing pairs of occluding edges from occludee hair regions
around a common occluder, see again Fig. 11a. We consider
three matching criteria: 1) color difference between of the
two occludee regions around their corresponding occluding
edges; 2) sum of distances between the corresponding end-
points of the two occluding edges; and 3) tangent vectors at
the occluding edge endpoints.

If a match is found within a threshold, we complete the
occluded area by constructing two B�ezier curves with C1

continuity to connect the corresponding endpoints of the
occluding edges. Then, we merge the two divided hair
regions, together with the completed area, into a single hair
strand in our 2.5D model.

5.2 Case 2: Occluded Root

The second and third cases account for occluding edges that
are not paired with others. Since we do not have a clear
shape in the completion, the second and third cases are
more complicated than the first one. Here we first try to
merge (or connect) neighboring occluding edges, e.g., ps
and sq in Fig. 11b, and then grow the related occludee hair
strands to form the completion area.

Notations. We denote R as the occludee region to be com-
pleted, OðRÞ as the set of occluder regions above R, p and q
as the two outermost endpoints on R’s (merged) occluding
edge, and Tp and Tq as the related tangents at p and q,
respectively. See Fig. 11b.

Our method. We devise an active-contour method based
on a novel Hamiltonian function, and adopt it in a curve
deformation model [36]. In short, our method iteratively
refines a curve, say CiðtÞ, to form the completion area with
the following constraints: Cið0Þ¼p; Cið1Þ¼q; C0

ið0Þ¼Tp;

C0
ið1Þ¼�Tq; and Ci should be smooth and lie under OðRÞ.
To adopt the deformable model [36] for our problem, we

first construct an external force field Fext for pushing Ci. To
do so, we extract two short curve segments at p and q, say cp
and cq, see Fig. 12 (left & middle), and solve the following
Hamiltonian function for Ap and Bp given cp: HpðxÞ ¼
1
2 x

TApx þ xTBp, which should satisfy

_cpðtÞ ¼ @HpðcpðtÞÞ
@y

;� @HpðcpðtÞÞ
@x

� �
and

@HpðcpðtÞÞ
@t

¼ 0 ;

where x is the 2D image space; Ap and Bp are unknowns
solved by the above constraints. Then, we compute

FpðxÞ ¼ Rð�p=2ÞrHp ¼ Rð�p=2ÞðApxþBpÞ ;

which is the vector field derived from cp, see Fig. 12 (left).
Note that we rotate rHp by p=2 clockwise because rHp

faces outward relative to R. Similarly, we solve Hq for Aq

and Bq given cq, and compute FqðxÞ. Lastly, we combine Fp

and Fq to form

FextðxÞ ¼ VðxÞðtFpðxÞ þ ð1� tÞFqðxÞÞ ;
where VðxÞ ¼ Sigmoidð�pðxÞ ��qðxÞÞ; �pðxÞ ¼ maxðHpðpÞ�
HpðxÞ; 0Þ, �qðxÞ ¼ maxðHqðxÞ �HqðqÞ; 0Þ are used to clamp
negative values to avoid unnatural hair growth; and t 2
½0; 1� is an interpolation factor based on distances from p
and q.

After obtaining Fext, see Fig. 12 (right), we compute the
convex hull of the occluding boundary of R from p to q, say
C0, see the orange curve in Fig. 12 (right). Then, we employ
Algorithm 1 with C0 (as an initial curve) and Fext as inputs
to iteratively refine C0 to form the completion area. Note
that N is the normal of the curve; Vi is the velocity to push
the curve outward; and A is a pentadiagonal matrix, see
[36] for its detail.

Algorithm 1. ITERATIVE_REFINE (C0; Fext)

1: i (0
2: while true do
3: i (iþ 1
4: for each sample point Ci�1ðtÞ do
5: ViðtÞ (jjFextðCi�1ðtÞÞ �NðCi�1ðtÞÞjjNðCi�1ðtÞÞ
6: CiðtÞ (ðI � AÞ�1½Ci�1ðtÞ þ ViðtÞ�
7: if CiðtÞ outside OðRÞ then
8: return Ci�1

9: end if
10: end for
11: if jjVijj < � then
12: return Ci

13: end if
14: end while

Fig. 11. Hair completion cases: (a) intersecting hairs, (b) occluded root,
and (c) occluded tip before and after refinement.

Fig. 12. Left & Middle: Vector fields (Fp & Fq) constructed from red short
curve segments at p and q, respectively; Right: Combined vector field
Fext for pushing C0 (orange).

YEH ET AL.: 2.5D CARTOON HAIR MODELING AND MANIPULATION 309

5.3 Case 3: Occluded Tip

The third case is similar to the second case, except that we
need to achieve a sharp instead of round tip. After we form
a round tip by the method in case 2, see Fig. 11c (middle),
we determine the farthest point on the extrapolated contour,
approximate it with a cubic B�ezier curve, and then adjust
the tangents at the farthest point to produce a sharp tip, see
Fig. 11c (right).

5.4 Overall Procedure

To differentiate among the above three cases for each occlud-
ing edge, we start with thematching process described in case
1. If an occluding edge can be paired with others, we perform
the completion procedure described in case 1. For each
unpaired occluding edge, we differentiate between cases 2
and 3 by computing the average distance of the edge to the
center of the head. If the edge is closer to the head as com-
pared to the non-occluded region, we go for case 2, else case 3.

After obtaining the shape of the completion area, we
employ an existing inpainting method [37] to synthesize the
texture and color in the occluded region using the textures
sampled from the remainder of the hair image. Some arti-
facts may appear if the hair occludes nontrivial image fea-
tures such as eyes and mouth, where manual inpainting is
required to complete the features.

6 CARTOON HAIR ANIMATION AND MANIPULATION

To support hair animation and manipulation, we construct a
skeleton for each completed hair strand as follows: First, we
determine the tip of each hair strand by identifying the sharp
corner(s) in each completed hair strand. Then, we look for
corners that are locally above the neighboring regions by
using the layering results we obtained earlier. Next, we con-
struct a medial axis from the hair tip along the hair strand as
the hair skeleton. Sometimes, a hair strand may have
branches, so when we grow multiple medial axes from dif-
ferent tips, we join themedial axes in a hierarchical skeleton.

6.1 Cartoon Hair Animation

In general, hair simulations require modeling both the
blowing wind and hair strands in 3D, and coupling 3D fluid
dynamics with material deformation. This, however, could
be too complicated for conventional cartoons. Hence, we
propose a simplified simulation, which is efficient for gener-
ating wind-blown hairs.

Our method is based on the following assumptions.
First, the movement of hair strands is approximated by the
corresponding skeletons. Second, the hair dynamics is
approximated by a linear elastic model with piecewise rigid
deformation. Lastly, we ignore hair-hair interactions, and
only employ 2D fluid simulations.

In detail, we move the hair skeleton by the aerodynamic
forces from the wind, and employ the lattice Boltzmann
model to solve the incompressible Navier-Stokes equa-
tion [38] with the hair skeleton as the boundary. After the
simulation, we obtain pressure p, which is normal to the
skeleton curve. Moreover, to prevent the skeleton from
excessive bending, wemodel bending force f ¼ gkn, where g
is the stiffness; k is local curvature; and n is the normal vector
along the skeleton curve. Together with the gravity force g,
the total force acting on the skeleton is: F ¼�pnþ fþ g.

Next, we uniformly sample the skeleton curve, and
compute F at each sample node. Then, we perform time
integration to deform and animate the skeleton according to

the following dynamic equation: €u ¼ tF � n, where u is the
change in angle between successive edges at each sample
node; t is the rate of rotation, which allows for small or large
amount of hair movement. Note that we deform the skele-
ton by considering only rotation at sample nodes, and com-
pute the rotations to bend the hair strand starting from its
root till the tip. To improve the visual realism, we also vary

the rotation rate along the hair by t ¼ t0d
�, where t0 is the

base rotation rate and d is the distance from the hair root
along the skeleton; � is the user-controllable parameter for
tuning the amount of hair bending.

Once we obtain the skeletons and their motion trajecto-
ries, we deform the mesh to follow the skeleton motion by
binding each mesh vertex to one or more bones of the skele-
ton with appropriate blending weights per vertex. In our
model, we set the weights as the inverse distance from the
skeleton curve. Other standard methods, such as [39], could
also be used here.

Fig. 13 presents our hair animation results. A single wind
source is used to simulate the wind blowing on the cartoon
hairs. From these results, we can see that our method can
properly animate the hair strands with appropriate 2.5D
layering while retaining the original drawing style of the
artists in the given cartoon images.

6.2 Cartoon Hair Manipulation

Hair editing. Our 2.5D hair model enables flexible editing of
hair strands in cartoon images, e.g., layering order, hair
length, braiding, see Fig. 14. We achieve these effects by
manipulating the hair skeleton and adopting the as-rigid-as-
possiblemethod [40] for the deformation. In detail, we formu-
late it as a minimization problem with a deformation term, a
smoothness term, and a constraint term, and the objective is
defined as V ¼ wRVR þ wHVH þ wCVC , where wR, wH and
wC are the weighting coefficients, which are set to 20; 1; 1000,
respectively in all our experiments. VR is a deformation

term defined as VR ¼ P
i2V;k2S w

k
i kðvi � skÞ � Tkðv0i � s0kÞk2,

where wk
i is the weight of vertex vi for skeleton sk 2 S (S is a

set of bones) and is set to be the inverse of the distance from
the skeleton; and symbol 0 indicates variables of the deformed
skeleton. Tk is the transformation matrix that constrains
the resizing of hair along the tangential direction of the
skeleton to maintain the overall shape; it is defined as a rigid
transformation:

Tk ¼ R
ek0
ð1;0Þ

s 0
0 1

� �
Rð1;0Þ

ek
;

where ek ¼ sk2 � sk1 and e0k denotes the deformed edge vec-

tor; Rv0
v is the rotation matrix that transforms vertex v to v0;

and s ¼ kek0 k=kekk is a scale factor. This transformation
allows (and prevents) scaling along tangential (and normal)
direction of the bones. VH is a smoothness term defined as

VH ¼ P
ði;jÞ2E wijkv0j � v0ik2, where wij ¼ cotuij þ cotu0ij are

discrete harmonic weights, uij and u0ij are angles opposite to

the edge ði; jÞ in the original mesh. VC is a constraint term

defined as VC ¼ P
i2C kvi � v0ik2, where C is a set of

310 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 3, MARCH 2015

constraint vertices. We set boundary constraints at the root
of the hair strand.

Hair braiding. We adopt the twist operation in [6] for pro-
ducing the hair braiding effect, see Fig. 14. Here we darken
the texture of the hair strand as its back texture, and twist
the hair strand geometry while mixing its front and back
textures. Since we can only present static images in the
paper, readers can refer to the supplementary video for the
related animation results.

7 DISCUSSION

Implementation and performance. The proposed system is
implemented in C++ and evaluated on a desktop com-
puter with a 3.4 GHz CPU and 4GB memory. The time
taken to manually segment the hair in the four cartoon
images shown in Fig. 13 (from top to bottom) are 8, 12, 9,
and 15 minutes, respectively. These cartoon characters
have face features, but we avoid them in the figure for
clarity in the results presentation. The average processing

Fig. 14. Hair manipulation results: our tool can scale the hair strands to change the hairstyle (top row); and perform hair braiding by twisting the hair
strands (bottom row) from single input images (leftmost).

Fig. 13. Hair animation results: snapshots of 2.5D cartoon hair animations produced from our method.

YEH ET AL.: 2.5D CARTOON HAIR MODELING AND MANIPULATION 311

time (over four segmented cartoon images) for layering
computation, hair completion (excluding color and tex-
ture inpainting), skeleton generation, and deformation
are around 0.031, 1.608, 0.415, and 0.015 seconds, respec-
tively. After the 2.5D modeling, the hair animation pro-
cess, which involves a fluid simulation, takes around 1.5
seconds to compute each frame.

Evaluating the layering metric. We conducted an experi-
ment to evaluate the layering metric presented in Section 4
with seven subjects: ages from 23 to 27 (mean 24.43);
four males and three females; and volunteer-based. Fig. 13
shows the four cartoon images we employed with a total of
475 layering cases, each corresponding to a pair of neighbor-
ing image regions around a cartoon hair.

In detail, we implemented a simple interface in Python to
present the cartoon image to the subjects with a zoom-in
view for each layering case. The subjects can enter their
layering judgment by a mouse click, i.e., which region is on
the top or whether the two regions have equal depth. Then,
the subject can hit Spacebar to finalize a decision, and pro-
ceed to the next layering case. Our interface records the
layering judgment and the time taken per case. The subjects
have no time constraint in making a decision, but they
mostly took a few seconds per case, except for some more
complicated ones, which may require more than 10 seconds.

After collecting the data, we first compute the ground
truth (G.T.) of each layering case by voting over the subject’s
input because different subjects may perceive different
layering orders. Then, we compare the subject’s inputs
against the ground truth to compute the average accuracy
of human subjects. Similarly, we compute the average accu-
racy of our layering metric by comparing our results against
the ground truth. From the second and third columns in
Table 1, which summarize the accuracy results, we can see
that our layering metric can achieve similar or even better
accuracy compared to human subjects. Moreover, our layer-
ing is automatic and simple to compute; it only takes
around 0:031 seconds to compute, see the last column in
Table 1.

The few failure cases, where our layering result does not
match the human judgment result, are mainly due to two
reasons: 1) some cases are truly ambiguous even for human
judgment, see the two examples shown in Fig. 15a; and
2) our method predicts equal layering depth based on com-
puting the Laplacian; hence, for unclear boundaries
between hair strands, Cheng’s curve extraction algorithm
may miss the related contour line, see Fig. 15b, and so, our
layering metric may mis-classify it as non-occluding bound-
ary with equal depth.

Comparative study: Cartoon videos. We compared our hair
animation results with three real cartoon videos. First, we
extract a single image frame from each of these videos, and
apply our method to produce a 2.5D cartoon model for each
extracted image. Then, we adjust the fluid simulator to
create a similar wind flow, and generate hair animations.
After that, we can compare our hair animation results with
the original cartoon videos. Readers can refer to the supple-
mentary video for the related animations. The results show
that our hair animations are visually comparable to the orig-
inal videos even though our method takes only a single
image as input.

Limitations. First, we cannot handle messy hairstyles
because the hairs in this case cannot be properly segmented
into strands for 2.5D modeling. Also, thin hair strands like
real human hairs may not be suitable for use in our system.
Second, our layering method currently cannot handle inter-
twined hair strands because it does not consider local layer-
ing [23], e.g., two graphical elements overlay each other
with different layerings in different parts of the image.
Third, our hair simulation model assumes no hair-hair inter-
action, i.e., the hair strands are animated independently.

8 CONCLUSION

This paper presents a novel 2.5D approach to modeling, ani-
mating, and manipulating hairs in a single cartoon image. In
summary, we have three key contributions: First, we derive
an effective layering metric from the Gestalt psychology
and our observation on cartoon images; it can automatically
optimize the layering order among hair strands in a single
cartoon image. Second, we develop a novel layer comple-
tion method that can automatically fill the occluding parts
of hair strands; by this, we can construct a 2.5D hair model
to support hair animation and manipulation with appropri-
ate layering. Lastly, we devise a simplified simulation
model to animate the skeletons in hair strands, and also
develop a wide variety of hair manipulation operations,
including hair editing and hair braiding. To demonstrate
the capability of our approach, we also compare our results
with conventional cartoon videos, and apply our method
to produce hair animation and manipulation results on
assorted cartoon characters.

Future work. First, we plan to extend our 2.5D layering
model to support local layering similar to that in [41]. Sec-
ond, we would like to explore ways to produce pseudo 3D
effect in the hair animation to further improve the visual
quality. Third, we plan to develop cartoon hair re-shading
(or relighting) method on the hair strands when we animate

TABLE 1
Comparison: Human Subject versus our Layering Metric

cartoon images accuracy (vs G.T.) average time (sec.)

(see Fig. 13) subjects our metric subjects our metric

First row 90:1% 91:4% 192:0 0:031
Second row 92:3% 93:5% 382:1 0:042
Third row 95:9% 97:0% 216:7 0:032
Fourth row 90:7% 92:3% 231:2 0:020
Average 92:3% 93:6% 255:5 0:031Fig. 15. Examples, where our layering metric does not match the human

judgment results: (a) layering ambiguity and (b) inaccurate edge
detection.

312 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 3, MARCH 2015

the hairs. Lastly, we are interested in exploring ways to
extend our method to other parts of a cartoon character by
studying whether or how to revise our layering method, as
well as the related completion and inpainting process.

ACKNOWLEDGMENTS

We would like to thank the reviewers for the many
constructive comments that helped improve the paper. This
work was supported in part by the Ministry of Science and
Technology (contracts MOST-103-2221-E-006-107 and
MOST-103-2221-E-006-106-MY3), Taiwan, and MOE Tier-1
(RG 29/11) andMOETier-2 (MOE2011-T2-2-041), Singapore.

REFERENCES

[1] Z. Lin, L. Wang, Y. Wang, S. Kang, and T. Fang, “High resolution
animated scenes from stills,” IEEE Trans. Vis. Comput. Graph.,
vol. 13, no. 3, pp. 562–568, May/Jun. 2007.

[2] X. Xu, L. Wan, X. Liu, T.-T. Wong, L. Wang, and C.-S. Leung,
“Animating animal motion from still,” ACM Trans. Graph.
(SIGGRAPH Asia 2008), vol. 27, no. 5, pp. 117:1–117:8, 2008.

[3] M. Okabe, K. Anjyo, T. Igarashi, and H.-P. Seidel, “Animating
pictures of fluid using video examples,” Comput. Graph. Forum,
vol. 28, no. 2, pp. 677–686, 2009.

[4] M. Chai, L. Wang, Y. Weng, X. Jin, and K. Zhou, “Dynamic
hair manipulation in images and videos,” ACM Trans. Graph.
(SIGGRAPH 2013), vol. 32, no. 4, pp. 75:1–75:8, 2013.

[5] A. Rivers, T. Igarashi, and F. Durand, “2.5D cartoon models,”
ACM Trans. Graph. (SIGGRAPH 2010), vol. 29, pp. 59:1–59:7, 2010.

[6] C.-K. Yeh, S. Peng, L. Peng-Yen, C.-W. Fu, L. Chao-Hung, and L.
Tong-Yee, “Double-sided 2.5D graphics,” IEEE Trans. Vis. Comput.
Graph., vol. 19, no. 2, pp. 225–235, Feb. 2013.

[7] Y. Watanabe and Y. Suenaga, “A trigonal prism-based method for
hair image generation,” IEEE Comput. Graph. App., vol. 12, no. 1,
pp. 47–53, Jan. 1992.

[8] L.-H. Chen, S. Saeyor, H. Dohi, and M. Ishizuka, “A system of 3D
hair style synthesis based on the wisp model.” Vis. Comput.,
vol. 15, no. 4, pp. 159–170, 1999.

[9] T.-Y. Kim and U. Neumann, “A thin shell volume for modeling
human hair,” in Proc. IEEE Comp. Anim., 2000, pp. 104–111.

[10] ——, “Interactive multiresolution hair modeling and editing,”
ACM Trans. Graph. (SIGGRAPH 2002), vol. 21, no. 3, pp. 620–629,
2002.

[11] C. Yuksel, S. Schaefer, and J. Keyser, “Hair meshes,” ACM Trans.
Graph. (SIGGRAPH Asia 2009), vol. 28, no. 5, pp. 166:1–166:7, 2009.

[12] S. Hadap and N. Magnenat-Thalmann, “Interactive hair styler
based on fluid flow,” in Proc. Eurographics Workshop Comput.
Anim. Simul., 2000, pp. 87–99.

[13] ——, “Modeling dynamic hair as a continuum,” Comput. Graph.
Forum, vol. 20, no. 3, pp. 329–338, 2001.

[14] C. Byoungwon and K. Hyeong-Seok, “A statistical wisp model
and pseudophysical approaches for interactive hairstyle gener-
ation,” IEEE Trans. Vis. Comput. Graph., vol. 11, no. 2, pp. 160–170,
Mar. 2005.

[15] A. Selle, M. Lentine, and R. Fedkiw, “A mass spring model for
hair simulation,” ACM Trans. Graph. (SIGGRAPH 2008), vol. 27,
no. 3, pp. 64:1–64:11, 2008.

[16] S. Paris, H. M. Brice~no, and F. X. Sillion, “Capture of hair geome-
try from multiple images,” ACM Trans. Graph. (SIGGRAPH 2004),
vol. 23, no. 3, pp. 712–719, 2004.

[17] S. Paris, W. Chang, O. I. Kozhushnyan, W. Jarosz, W. Matusik, M.
Zwicker, and F. Durand, “Hair photobooth: Geometric and
photometric acquisition of real hairstyles,” ACM Trans. Graph.
(SIGGRAPH 2008), vol. 27, no. 3, pp. 30:1–30:9, 2008.

[18] T. L. Herrera, A. Zinke, and A. Weber, “Lighting hair from the
inside: A thermal approach to hair reconstruction,” ACM Trans.
Graph. (SIGGRAPH Asia 2012), vol. 31, no. 6, pp. 146:1–146:9, 2012.

[19] L. Luo, H. Li, and S. Rusinkiewicz, “Structure-aware hair
capture,” ACM Trans. Graph. (SIGGRAPH 2013), vol. 32, no. 4,
pp. 76:1–76:12, 2013.

[20] T. Sakai and V. Savchenko, “Skeleton-based anime hair modeling
and visualization,” in Cyberworlds (CW), Conf. Int. 2013, pp. 318–
321, Oct. 2013.

[21] E. Sugisaki, Y. Yu, K. Anjyo, and S. Morishima, “Simulation-based
cartoon hair animation,” in Proc. Winter School Comput. Graph.,
2005, pp. 117–122.

[22] J. Shin, M. Haller, and R. Mukundan, “A stylized cartoon hair
renderer,” in Proc. ACM Adv. Comp. Entertainment Tech., 2006,
pp. 64–64.

[23] J. McCann and N. Pollard, “Local layering,” ACM Trans. Graph.
(SIGGRAPH 2009), vol. 28, no. 3, pp. 84:1–84:7, 2009.

[24] K. Wiley, “Druid: Representation of interwoven surfaces in 2 1/2d
drawing,” Ph.D. dissertation, Univ. New Mexico, Albuquerque,
NM, USA, 2006.

[25] L. Zhang, H. Huang, and H. Fu, “EXCOL: An EXtract-and-COm-
plete Layering Approach to Cartoon Animation Reusing,” IEEE
Trans. Vis. Comput. Graph., vol. 18, no. 7, pp. 1156–1169, May 2012.

[26] X. Liu, X. Mao, X. Yang, L. Zhang, and T.-T. Wong,
“Stereoscopizing cel animations,” ACM Trans. Graph. (SIGGRAPH
Asia 2013), vol. 32, no. 6, pp. 223:1–223:10, 2013.

[27] M.-M. Cheng, “Curve structure extraction for cartoon images,” in
Proc. Harmonious Human Mach. Env., 2009, pp. 13–25.

[28] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of
the number of points required to represent a digitized line or its
caricature,” Cartographica: Int. J. Geogr. Inf. Geovisualization, vol. 10,
no. 2, pp. 112–122, 1973.

[29] J. R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator,” in Applied Computational
Geometry, ser. Lecture Notes in Computer Science, New York, NY,
USA: Springer-Verlag, 1996, vol. 1148, pp. 203–222.

[30] Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–
1137, Jul. 2004.

[31] S.-H. Zhang, T. Chen, Y.-F. Zhang, S.-M. Hu, and R. R. Martin,
“Vectorizing cartoon animations,” IEEE Trans. Vis. Comput.
Graph., vol. 15, no. 4, pp. 618–629, May 2009.

[32] D. S�ykora, D. Sedlacek, S. Jinchao, J. Dingliana, and S. Collins,
“Adding depth to cartoons using sparse depth (in)equalities.”
Comput. Graph. Forum (Eurographics 2010), vol. 29, no. 2, pp. 615–
623, 2010.

[33] Z. Jia, A. Gallagher, Y.-J. Chang, and T. Chen, “A learning-based
framework for depth ordering,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2012, pp. 294–301.

[34] G. Palou and P. Salembier, “Monocular depth ordering using
t-junctions and convexity occlusion cues,” IEEE Trans. Image
Process., vol. 22, no. 5, pp. 1926–1939, Jan. 2013.

[35] A. Desolneux, L. Moisan, and J.-M. Morel, From Gestalt Theory to
Image Analysis: A Probabilistic Approach, 1st ed. New York, NY,
USA: Springer, 2007.

[36] C. Xu, D. L. Pham, and J. L. Prince, “Image segmentation using
deformable models,” Handbook Med. Imaging, vol. 2, pp. 129–174,
2000.

[37] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. Image
Process., vol. 13, no. 9, pp. 1200–1212, Dec. 2004.

[38] D. Yu, R. Mei, L.-S. Luo, and W. Shyy, “Viscous flow computa-
tions with the method of lattice boltzmann equation,” Progress
Aerospace Sci., vol. 39, no. 5, pp. 329–367, 2003.

[39] I. Baran and J. Popovi�c, “Automatic rigging and animation of 3D
characters,” ACM Trans. Graph. (SIGGRAPH 2007), vol. 26, no. 3,
pp. 72:1–72:8, 2007.

[40] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-possible
shape manipulation,” ACM Trans. Graph. (SIGGRAPH 2005),
vol. 24, no. 3, pp. 1134–1141, 2005.

[41] E. Eisemann, S. Paris, and F. Durand, “A visibility algorithm for
converting 3D meshes into editable 2D vector graphics,” ACM
Trans. Graph. (SIGGRAPH 2009), vol. 28, no. 3, pp. 83:1–83:8, 2009.

Chih-Kuo Yeh received the BS degree from
the Department of Information Engineering and
Computer Science, from Feng Chia University,
Taichung, Taiwan, in 2005, the MS degree from
the Institute of Bioinformatics from National Chiao
TungUniversity, Hsinchu, Taiwan, in 2007, and the
PhD degree from the Department of Computer
Science and Information Engineering, National
Cheng-Kung University, Tainan, Taiwan, in 2015.
His research interests include scientific visualiza-
tion, computer animation and computer graphics.

YEH ET AL.: 2.5D CARTOON HAIR MODELING AND MANIPULATION 313

Pradeep Kumar Jayaraman received the BTech
degree in information technology from Anna
University, Chennai, India, in 2009. He is currently
working toward the PhD degree in the School
of Computer Engineering at Nanyang Technologi-
cal University, Singapore. His research focuses
on computer vision, computer graphics and
applications.

Xiaopei Liu received the PhD degree from the
Chinese University of Hong Kong, Hong Kong, in
2010, majoring in computer graphics and image
analysis. He is currently a research fellow at
Nanyang Technological University in Singapore.
His current research interests include fluid
dynamics and its related visualization and render-
ing techniques. He is also interested in image
analysis and synthesis, as well as GPU-based
parallel computing techniques.

Chi-Wing Fu received the BSc and MPhil
degrees in computer science and engineering
from the Chinese University of Hong Kong,
Hong Kong, respectively, and the PhD degree in
computer science from Indiana University,
Bloomington, IN. He is currently an Associate
Professor in the School of Computer Engineering
at the Nanyang Technological University, Singa-
pore. His research focuses on interactive meth-
ods in the areas of computer graphics, geometric
design, visualization, and human-computer inter-

action. He now serves as an associate editor of Computer Graphics
Forum (CGF). He is a member of the IEEE.

Tong-Yee Lee received the PhD degree in com-
puter engineering from Washington State Univer-
sity, Pullman, WA, in May 1995. He is currently a
Chair Professor in the Department of Computer
Science and Information Engineering, National
Cheng-Kung University, Tainan, Taiwan. He
leads the Computer Graphics Group, Visual
System Laboratory, National Cheng-Kung Uni-
versity (http://graphics. csie.ncku.edu.tw/). His
current research interests include computer
graphics, nonphotorealistic rendering, medical

visualization, virtual reality, and media resizing. He is a senior member
of the IEEE Computer Society and a member of the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

314 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 3, MARCH 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

